
Oracle ® Application Server

Developer’s Guide: JServlet Applications

Release 4.0.8.1

September 1999

Part No. A73043-01

Oracle Application Server Release 4.0.8.1 Developer’s Guide: JServlet Applications

Part No. A73043-01

Copyright © 1996, 1999, Oracle Corporation. All rights reserved.

Primary Author: Sanjay Singh

Contributors: Zhou Ye, Sumathi Gopalakrishnan, Ramani Jagedeba, Jerry Bortved, Jun Wang, Alice Chan, Bo
Stern, Ryan Bennett, Yongwen Xu, Yi Liu, Ayub Khan

The programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the programs are used for such
purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the programs.

The programs (which include both the software and documentation) contain proprietary information of Oracle
Corporation; they are provided under a license agreement containing restrictions on use and disclosure and are
also protected by copyright, patent, and other intellectual and industrial property laws. Reverse engineering,
disassembly, or decompilation of the programs is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in the
documentation, please report them to us in writing. Oracle Corporation does not warrant that this document is
error free. Except as may be expressly permitted in your license agreement for these programs, no part of these
programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose, without the express written permission of Oracle Corporation.

If the programs are delivered to the U.S. Government or anyone licensing or using the programs on behalf of
the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial computer
software" and use, duplication, and disclosure of the programs, including documentation, shall be subject to
the licensing restrictions set forth in the applicable Oracle license agreement. Otherwise, programs delivered
subject to the Federal Acquisition Regulations are "restricted computer software" and use, duplication, and
disclosure of the programs shall be subject to the restrictions in FAR 52.227-19, Commercial Computer Software
- Restricted Rights (June, 1987). Oracle Corporation, 500 Oracle Parkway, Redwood City, CA 94065.

Oracle is a registered trademark, and the Oracle logo, NLS*WorkBench, Pro*COBOL, Pro*FORTRAN,
Pro*Pascal, SQL*Loader, SQL*Module, SQL*Net, SQL*Plus, Oracle7, Oracle Server, Oracle Server Manager,
Oracle Call Interface, Oracle7 Enterprise Backup Utility, Oracle TRACE, Oracle WebServer, Oracle Web
Application Server, Oracle Application Server, Oracle Network Manager, Secure Network Services, Oracle
Parallel Server, Advanced Replication Option, Oracle Data Query, Cooperative Server Technology, Oracle
Toolkit, Oracle MultiProtocol Interchange, Oracle Names, Oracle Book, Pro*C, and PL/SQL are trademarks or
registered trademarks of Oracle Corporation. All other company or product names mentioned are used for
identification purposes only and may be trademarks of their respective owners.

Contents

Preface ... vii

1 Introduction

JServlet Terminology.. 1-2
Developing Servlets for the JServlet Cartridge .. 1-2

Tools Required .. 1-3
Development Strategy ... 1-3
The init() Method.. 1-3
Entry Point Methods .. 1-3
The destroy() Method .. 1-4

Control Flow .. 1-4
Versions of Java Supported... 1-5

Unsupported Java Servlet Features ... 1-5

2 Tutorial

1. Creating the Java Class Files... 2-1
2. Creating a JServlet Application and Cartridge ... 2-3
3. Reloading Oracle Application Server ... 2-5
4. Invoking the JServlet Cartridge ... 2-6
For More Information... ... 2-6

3 Developing JServlets

Initializing Servlets .. 3-1
Accessing HTTP Request Information ... 3-2
iii

POST and GET Methods.. 3-3
Accessing Information from a Form .. 3-3

Generating HTTP Response Information .. 3-4
Output Streams ... 3-5
Generating HTTP Response Headers .. 3-5
Generating HTML .. 3-6
Extending the oracle.html Package .. 3-8
Closing Streams in the System Class ... 3-9

Invoking JServlet Cartridges .. 3-10
Destroying JServlet Instances... 3-11
Runtime Interpreter Options .. 3-12

4 Advanced JServlet Programming

Using Sessions ... 4-1
Programmable Sessions ... 4-2
Local and Distributed and Sessions ... 4-6
Binding Session Objects ... 4-7
Changes from the JWeb Session Model... 4-9

Inter-Cartridge Exchange (ICX) Service.. 4-9
Servlet Concurrency ... 4-18

Thread Safety and the SingleThreadModel Interface.. 4-19
Changes from the JWeb Threading Model ... 4-21

Spawning Sub-Threads ... 4-21
Name Spaces of Java Classes .. 4-23

Reflection APIs .. 4-24
Using Packages.. 4-25
Adding Classes with Native Libraries... 4-27

5 Invoking Components

Invoking ECO/Java Objects .. 5-1
CLASSPATH ... 5-1
Example.. 5-3

Invoking Enterprise Java Beans ... 5-4
CLASSPATH ... 5-4
Example.. 5-5
iv

Invoking C++ CORBA Applications .. 5-6

6 Database Access

Using JDBC Drivers ... 6-1
Opening and Closing Connections .. 6-2
Error Handling.. 6-2
Using Multibyte Character Sets.. 6-2

JDBC Example ... 6-3
Using the Transaction Service .. 6-5

Transaction Service with JDBC... 6-6

7 pl2java

Overview of pl2java ... 7-2
Requirements... 7-2
Running pl2java.. 7-3
PL/SQL Data Type Mapping in Java ... 7-4

Example.. 7-6
Connecting to the Database .. 7-7
Invoking PL/SQL Stored Procedures .. 7-8
Handling Database Errors... 7-9
Setting the Character Set Value.. 7-9
Freeing Database Sessions .. 7-10
Using the Transaction Service with pl2java .. 7-10

Configuration .. 7-11
Transaction Service with pl2java-generated Classes... 7-11

Index
v

vi

Preface

Audience
This book is for developers who want to create Java Servlet-based Web applications
for Oracle Application Server.

Assumptions
We assume that the JServlet developer is familiar with the Java Servlet API Specifi-
cation and Java development.

The Oracle Application Server Documentation Set
This table lists the Oracle Application Server documentation set.

Title of Book Part No.

Oracle Application Server 4.0.8 Documentation Set A66971-03

Oracle Application Server Overview and Glossary A60115-03

Oracle Application Server Installation Guide for Sun SPARC Solaris 2.x A58755-03

Oracle Application Server Installation Guide for Windows NT A58756-03

Oracle Application Server Administration Guide A60172-03

Oracle Application Server Security Guide A60116-03

Oracle Application Server Performance and Tuning Guide A60120-03

Oracle Application Server Developer’s Guide: PL/SQL and ODBC Applications A66958-02

Oracle Application Server Developer’s Guide: JServlet Applications A73043-01

Oracle Application Server Developer’s Guide: LiveHTML and Perl Applications A66960-02
 vii

Conventions
This table lists the typographical conventions used in this manual.

The term “Oracle Server” refers to the database server product from Oracle Corpo-
ration.

Oracle Application Server Developer’s Guide: EJB, ECO/Java and CORBA Applications A69966-01

Oracle Application Server Developer’s Guide: C++ CORBA Applications A70039-01

Oracle Application Server PL/SQL Web Toolkit Reference A60123-03

Oracle Application Server PL/SQL Web Toolkit Quick Reference A60119-03

Oracle Application Server JServlet Toolkit Reference A73045-01

Oracle Application Server JServlet Toolkit Quick Reference A73044-01

Oracle Application Server Cartridge Management Framework A58703-03

Oracle Application Server 4.0.8.1 Release Notes A66106-04

Convention Example Explanation

bold oas.h
owsctl
wrbcfg
www.oracle.com

Identifies file names,
utilities,
processes,
and URLs

italics file1 Identifies a variable in text; replace this place
holder with a specific value or string.

angle brackets <filename> Identifies a variable in code; replace this place
holder with a specific value or string.

courier owsctl start wrb Text to be entered exactly as it appears. Also
used for functions.

square brackets [-c string]

[on|off]

Identifies an optional item.

Identifies a choice of optional items, each sep-
arated by a vertical bar (|), any one option
can be specified.

braces {yes|no} Identifies a choice of mandatory items, each
separated by a vertical bar (|).

ellipses n,... Indicates that the preceding item can be
repeated any number of times.

Title of Book Part No.
viii Oracle Application Server 4.0 Developer’s Guide: JServlet Applications

The term “oracle” refers to an executable or account by that name.

The term “oracle” refers to the owner of the Oracle software.

Technical Support Information
Oracle Global Support can be reached at the following numbers:

■ In the USA: Telephone: 1.650.506.1500

■ In Europe: Telephone: +44 1344 860160

■ In Asia-Pacific: Telephone: +61. 3 9246 0400

Please prepare the following information before you call, using this page as a check-
list:

❏ your CSI number (if applicable) or full contact details, including any special
project information

❏ the complete release numbers of the Oracle Application Server and associated
products

❏ the operating system name and version number

❏ details of error codes and numbers and descriptions. Please write these down
as they occur. They are critical in helping WWCS to quickly resolve your prob-
lem.

❏ a full description of the issue, including:

■ What - What happened? For example, the command used and its result.

■ When -When did it happen? For example, during peak system load, or
after a certain command, or after an operating system upgrade.

■ Where -Where did it happen? For example, on a particular system or
within a certain procedure or table.

■ Extent - What is the extent of the problem? For example, production sys-
tem unavailable, or moderate impact but increasing with time, or minimal
impact and stable.

❏ Keep copies of any trace files, core dumps, and redo log files recorded at or
near the time of the incident. WWCS may need these to further investigate
your problem. For a list of trace and log files, see “Configuration and Log Files”
in the Administration Guide.
ix

For installation-related problems, please have the following additional information
available:

❏ listings of the contents of $ORACLE_HOME (Unix) or %ORACLE_HOME%
(NT) and any staging area, if used.

❏ installation logs (install.log, sql.log, make.log, and os.log) typically stored in
the $ORACLE_HOME/orainst (Unix) or %ORACLE_HOME%\orainst (NT)
directory.

Documentation Sales and Client Relations
In the United States:

■ To order hardcopy documentation, call Documentation Sales: 1.800.252.0303.

■ For shipping inquiries, product exchanges, or returns, call Client Relations:
1.650.506.1500.

In the United Kingdom:

■ To order hardcopy documentation, call Oracle Direct Response:
+44 990 332200.

■ For shipping inquiries and upgrade requests, call Customer Relations:
+44 990 622300.
x Oracle Application Server 4.0 Developer’s Guide: JServlet Applications

Reader’s Comment Form

Oracle Application Server 4.0 Developer’s Guide: JServlet Applications

Part No. A73043-01
Oracle Corporation welcomes your comments and suggestions on the quality and
usefulness of this publication. Your input is an important part of the information
used for revision.

■ Did you find any errors?

■ Is the information clearly presented?

■ Do you need more information? If so, where?

■ Are the examples correct? Do you need more examples?

■ What features did you like most about this manual?

If you find any errors or have suggestions for improvement, please indicate the
topic, chapter, and page number below:

Please send your comments to:

Oracle Application Server Documentation Manager
Oracle Corporation
500 Oracle Parkway
Redwood Shores, CA 94065

If you would like a reply, please provide your name, address, and telephone num-
ber below:

Thank you for helping us improve our documentation.
xi

xii Oracle Application Server 4.0 Developer’s Guide: JServlet Applications

Introdu
1

Introduction

The JServlet cartridge contains a Java Virtual Machine and Java class libraries. It
provides a runtime environment for server-side Java applications written with the
Java Servlet API Specification (available from http://java.sun.com).

The advantages of using the JServlet cartridge include:

■ The JServlet cartridge provides better performance than CGI because there is
no start-up and shutdown of the Java Virtual Machine required for each
request. This also allows database connections to remain open for a session
reducing the overhead of reconnecting to the database with each request.

■ The JServlet cartridge takes advantage of Oracle Application Server’s
load-balancing, scalability, monitoring, logging and session management
capabilities.

■ The JServlet cartridge minimizes the use of system resources by running
multiple JServlet cartridges on the same virtual machine when they belong to
the same application. Free instances of applications are also used when
available instead of creating new instances.

■ The JServlet cartridge comes with the JServlet Toolkit, which provides a set of
classes that can be used to generate HTML and access databases.

JServlets are run on the server side. The cartridge is not involved with running Java
applets, which are downloaded and run on the client’s machine.

Before invoking a servlet application through the JServlet cartridge, you provide
the cartridge with configuration information such as a virtual path, environment
variables and authentication information. This configuration is done with the
Oracle Application Server Manager.

For general information about Java Servlets, refer to the Java Servlet API
Specification. This is available from http://java.sun.com.
ction 1-1

JServlet Terminology
Contents
■ JServlet Terminology

■ Developing Servlets for the JServlet Cartridge

■ Control Flow

■ Versions of Java Supported

JServlet Terminology
In this book some terms are used frequently to describe components of Oracle
Application Server. They include:

Developing Servlets for the JServlet Cartridge
This section is an introduction to developing servlets for the JServlet cartridge. To
be able to develop such servlets, you will need to know the following:

■ Tools Required

■ Development Strategy

■ The init() Method

■ Entry Point Methods

■ The destroy() Method

Table 1–1 Terms used in this book

Term Definition

cartridge Code that executes application logic and configuration data that
defines its runtime behavior.

application A collection of cartridges that share the same runtime environment.

instance A JServlet instance.

JServlet runner A servlet engine.

cartridge server A process that all of the JServlet runners for an application run in.
For JServlet cartridges, this is the Java Virtual Machine running on
the server.
1-2 Oracle Application Server 4.0 Developer’s Guide: JServlet Applications

Developing Servlets for the JServlet Cartridge
Tools Required
The JServlet cartridge is a runtime environment, and as such, it does not come with
any development tools. To develop servlets for the JServlet cartridge, you will need
a compiler, a debugger, and other tools needed for servlet development. Oracle’s
JDeveloper and Sun’s JDK and JSDK are tools that can be used when developing
servlets.

Development Strategy
Because the JServlet cartridge is a runtime environment, it does not have built-in
debugging facilities other than using print statements to generate messages to a log
file.

You should build and debug as much of your application as possible outside of the
application server. Then, adding the JServlet Toolkit classes, you can finish the
application. This allows you to make full use of the debugging tools in your
development tool for the standard classes of your application.

The init() Method
The init() method of a servlet is called when a servlet is initialized. This method
is only called once for each servlet. The servlet will not be able to handle any
requests until its init() method has completed.

If any exception is thrown while executing init(), the instance will not be made
available and all references to the servlet are released immediately. The JServlet
cartridge will then return a failure on the request.

See "Initializing Servlets" on page 3-1 for more information about the init()
method.

Entry Point Methods
The service() method dispatches requests to a servlet entry method. Depending
on the type of request, this method is typically either the doGet() or doPost()
method. Either one or both of these methods can be defined and used as an entry
point into a servlet.

Note: The JServlet cartridge redirects the System.out stream to
the client’s browser.
Introduction 1-3

Control Flow
See the Java Servlet API Specification for more information on entry point methods.

The destroy() Method
When a JServlet application is being shut down, its destroy() method is called.
No other method of the servlet will be executed before the destroy() method is
called after the shutdown. This method will be called exactly once.

Although destroy() is not called until all instances have completed or timed out,
service requests received while the destroy() method is waiting to be called will not
be serviced.

See "Destroying JServlet Instances" on page 3-11 for more information about the
destroy() method.

Control Flow
The following figure shows how Oracle Application Server handles a request for a
JServlet cartridge.

Figure 1–1 Control flow for a JServlet cartridge

1. The listener component receives a request for a JServlet cartridge from a client.
For example, a request for http://karla-node/servlets/HelloServlet.

2. The dispatcher sees that the request is for a cartridge and forwards the request
to the WRB.

3. The WRB examines the URL and determines that the request is for a JServlet
cartridge because the virtual path (/servlets) is mapped to a JServlet cartridge.
The request is passed to the JServlet cartridge.

4. The JServlet cartridge running in a cartridge server process receives the
request, examines the URL, and finds the name of the Java application (class) to

Browser WRBListener/
Dispatcher

Cartridge server

Java classes

1 2 3

6

4

JServlet cartridge

5

666
1-4 Oracle Application Server 4.0 Developer’s Guide: JServlet Applications

Versions of Java Supported
invoke. The name of the class is typically at the end of the URL. For example, in
/servlets/HelloServlet, HelloServlet is the name of the class.

5. The JServlet cartridge loads the class and invokes its entry point method.

6. The Java application generates a response, including both the HTTP response
header and response body, and returns it through a special output stream
(HtmlStream). The JServlet cartridge receives the response and returns it to the
WRB. The WRB forwards the response to the browser that invoked the request.

Versions of Java Supported
The JServlet cartridge supports Java 1.1.6 and the Java Servlet API Specification
version 2.1. You should use a Java Development Kit (JDK) or an integrated
development environment (IDE) based on these versions for developing
applications for the JServlet cartridge.

Unsupported Java Servlet Features
The JServlet cartridge does not provide support for the following features from the
Java Servlet API Specification.

■ servlet chaining

■ Java Server Pages (JSPs)
Introduction 1-5

Versions of Java Supported
1-6 Oracle Application Server 4.0 Developer’s Guide: JServlet Applications

Tuto
2

Tutorial

This tutorial provides step-by-step instructions on how to create a JServlet
application, and how to invoke the application from a browser. The JServlet
application invokes a Java application that creates a simple HTML page which
displays “Hello World” in the browser.

Creating a JServlet application involves the following steps:

1. Creating the Java Class Files

2. Creating a JServlet Application and Cartridge

3. Reloading Oracle Application Server

4. Invoking the JServlet Cartridge

For More Information...

1. Creating the Java Class Files
This servlet consists of a Java class that prints “Hello World” to the client’s browser.

1. Enter the following Java source code in your Java development environment
and save it as HelloServlet.java.

Note: You should be able to log into the OAS Manager as the
“admin” user in order to add applications to the server. See the
Administration Guide for more information.
rial 2-1

1. Creating the Java Class Files
Example 2–1 HelloServlet.java code

import java.io.* ;
import javax.servlet.* ;
import javax.servlet.http.* ;

public class HelloServlet extends HttpServlet {
 public void doGet (
 HttpServletRequest request,
 HttpServletResponse response
) throws ServletException, IOException {

 response.setContentType("text/html");

 PrintWriter out = response.getWriter();
 out.println("<HTML><BODY>");
 out.println("<H2>Hello World</H2>");
 out.println("</BODY></HTML>");
 } // doGet
} // HelloServlet

2. In your development environment, set the environment variables to those set
in Table 2–1 and compile the source file.

If you are using Sun’s JDK, the Java compiler is called javac. Make sure it is in
your path and type:

prompt> javac HelloServlet.java

Table 2–1 Environment variables for JServlet applications

Name Value

JAVA_HOME $ORAWEB_HOME/jdk

CLASSPATH $JAVA_HOME/lib/classes.zip
$ORACLE_HOME/ows/cartx/jweb/classes/jweb.jar
$ORACLE_HOME/ows/cartx/jweb/classes/jservlet.jar
$ORACLE_HOME/orb/4.0/classes/yoj.jar (Unix only)
$ORACLE_HOME/orb/classes/yoj.jar (NT only)
$ORAWEB_HOME/classes/cosnam.jar

LD_LIBRARY_PATH (Unix only) $ORACLE_HOME/cartx/jweb/lib
$JAVA_HOME/lib/sparc/native_threads (Solaris only)

PATH (Windows NT only) $ORACLE_HOME/cartx/jweb/lib

THREADS_FLAG native
2-2 Oracle Application Server 4.0 Developer’s Guide: JServlet Applications

2. Creating a JServlet Application and Cartridge
The compiler creates a Java bytecode file called HelloServlet.class.

3. Check that the code is running correctly by running the bytecode.

This can be done with your development environment. For example, if you
were using JDeveloper to create and edit your servlet code, you could also use
JDeveloper to run and test your servlet. Consult your development
environment’s documentation for more information.

The HTML source should look like:

Content-type: text/html

<HTML><BODY>
<H2>Hello World</H2>
</BODY></HTML>

4. Copy the complied HelloServlet.class file to the $ORAWEB_HOME/test
directory. If you use another directory please use that path in the next stage.
Create the directory if it does not exist.

2. Creating a JServlet Application and Cartridge
You will need to log into the Oracle Application Server Manager as the “admin”
user in order to perform these steps. See the Administration Guide for more
information about the Oracle Application Server Manager.

1. Access the Oracle Application Server Welcome Page. See “Accessing the
Welcome Page” in the Administration Guide for instructions.

2. Click the next to a site name to display the components on the site. You
should see “Oracle Application Server”, “HTTP Listeners”, and “Applications”.

3. Click “Applications” to display the applications in the right frame. Do not click
the next to Applications because this will show a list of applications for the
site in the left frame, instead of Applications in the right frame.

4. On the applications page in the right frame, press the Add button (). The
Add Application dialog opens.

+

+

Tutorial 2-3

2. Creating a JServlet Application and Cartridge
5. In the Add Application dialog, enter the following information into the fields.

Click Apply.

This displays a second Add Application dialog.

6. In the second Add Application dialog, enter the following information into the
fields.

Click Apply.

When you click Apply, you get a Success dialog box, which contains a button
that enables you to add cartridges to the application.

7. In the Success dialog box, click the “Add Cartridge to this Application” button.
This displays the Add JServlet Cartridge dialog.

For this field... Enter this value... Because...

Application Type JServlet This is the type of application you will be
adding.

Configure Mode Manually This enables you to enter configuration data
using dialog boxes. The other option, From
File, would get the same configuration data
from a registration file.

For this field... Enter this value... Because...

Application
Name

helloservlet This is the name used to identify the
application.

Display Name Hello Servlet
Application

This name is used in the administration forms.

Application
Version

1.0 This is the version of the application you are
adding.
2-4 Oracle Application Server 4.0 Developer’s Guide: JServlet Applications

3. Reloading Oracle Application Server
8. In the Add JServlet Cartridge dialog enter the following information into the
fields.

Click Apply.

Now, the application you just added, helloservlet, contains one JServlet cartridge.

3. Reloading Oracle Application Server
After reconfiguring Oracle Application Server, you have to reload the server so
your changes can take effect. To reload Oracle Application Server:

1. In the Oracle Application Server Manager, select the website by clicking on the
website name at the top of the navigation tree.

2. Then, press the reload button () in the right frame.

The Oracle Application Server manager will reload all of the Oracle Application
Server processes, listeners and applications.

For this field... Enter this value... Because...

Cartridge
Name

hellocart This name is used to identify your
JServlet cartridge in your helloworld
application.

Display Name Hello Servlet Cartridge This name is used in the administration
forms.

Virtual Path /jservlets/test This is the path clients will use to
invoke the JServlet cartridge.

Physical Path %ORAWEB_HOME%/test This field specifies the directory that
contains the Java class files used by the
cartridge. If you used another path in
step 1.4, use that path here.

Note: Variables within Oracle Application Server are always
surrounded with percent signs regardless of the platform.

For example, to use ORACLE_HOME in a path, enter
%ORACLE_HOME%/<rest_of_path>.
Tutorial 2-5

4. Invoking the JServlet Cartridge
4. Invoking the JServlet Cartridge
You can invoke the JServlet cartridge by typing the following URL into your
browser:

http:// <host> : <port> /jservlets/test/HelloServlet

host and port identify a listener that knows about the cartridge. This can be any
listener on the application server except for the Node Manager listener. For
example, you could use the www listener which, by default, resides on port 80.

Another way of invoking the cartridge is from an HTML page. For example, you
can create the following HTML page (call it hello.html) to invoke your JServlet
cartridge. The HTML page contains a link that calls the cartridge URL.

The following is the code of hello.html.

<HTML>
<HEAD><TITLE>Hello</TITLE></HEAD>
<BODY>
<H1>My First JServlet</H1>
<P><A HREF=”http:// <host> : <port> /jservlets/test/HelloServlet”>Run my Hello
World class
</BODY>
</HTML>

hello.html should be saved in a directory that is mapped to a virtual directory for a
listener. If you would like to add a virtual directory, see “Configuring Directory
Mappings” in the Administration Guide.

For More Information...
This chapter has briefly discussed various aspects of Oracle Application Server
administration. More information on these topics can be found in the
Administration Guide.

Table 2–2 Administration Guide topics of interest

Topic Administration Guide Chapter and Section

Adding and configuring applications Application Administration

■ Adding and Configuring Applications

Adding and configuring cartridges Cartridge and Component Administration

■ Managing Cartridges
2-6 Oracle Application Server 4.0 Developer’s Guide: JServlet Applications

For More Information...
For information about the JServlet Toolkit and extensions to the Java Servlet API
Specification, refer to the JServlet Web Toolkit Reference.

For information about writing application and cartridge registration files which
automate adding applications and cartridges, refer to Cartridge Management
Framework.

Listener configuration Managing and Configuring HTTP Listeners

■ Configuring a Listener

Adding virtual directories Managing and Configuring HTTP Listeners

■ Configuring a Listener

Table 2–2 Administration Guide topics of interest

Topic Administration Guide Chapter and Section
Tutorial 2-7

For More Information...
2-8 Oracle Application Server 4.0 Developer’s Guide: JServlet Applications

Developing JSe
3

Developing JServlets

Contents
■ Initializing Servlets

■ Accessing HTTP Request Information

■ Generating HTTP Response Information

■ Invoking JServlet Cartridges

■ Destroying JServlet Instances

■ Runtime Interpreter Options

Initializing Servlets
JServlet cartridges are initialized when the JServlet runner is created. When the
cartridge is initialized, it’s init() method will be executed. This method is passed
a ServletConfig object which contains environment and configuration
information stored in name-value pairs. This is illustrated in Example 3–1.

In Oracle Application Server you can provide parameters under the Application’s
Java Environment form. These parameters can be accessed with the
ServletConfig.getInitParameter() method provided in the Java Servlet
API. This is illustrated in Example 3–2.
rvlets 3-1

Accessing HTTP Request Information
Example 3–1 Accessing initial parameters in a servlet

public void init (ServletConfig cfg) throws ServletException {
 // print the user name and password
 System.out.println("User name: " + cfg.getInitParameter("user"));
 System.out.println("Password: " + cfg.getInitParameter("pass"));
}

Example 3–2 Accessing the server environment

public void doGet (HttpServletRequest req, HttpServletResponse res)
 throws ServletException, IOException {

 // print the name and port of the server
 System.out.println("Server name: " + req.getServerName());
 System.out.println("Server port: " + req.getServerPort());
}

Accessing HTTP Request Information
Servlets are capable of receiving two types of information:

■ Information from the server that is accessed through the
HttpServletRequest object. This includes header, session and cookie
information. This is illustrated in Example 3–3.

■ Request parameters which are passed from the client to the servlet. This
information is typically sent as name-value pairs using either the POST or GET
method. These values are accessed using the HttpServletRequest.
getParameter() method. This is illustrated later in Example 3–5.

Note: This example assumes that the following name-value pair
is set in the Java Environment form:
Servlet. <servlet>.initArgs = user=karla,pass=secret

Further information on the Java Environment form can be found in
the Administration Guide.
3-2 Oracle Application Server 4.0 Developer’s Guide: JServlet Applications

Accessing HTTP Request Information
Example 3–3 Accessing information from the HttpServletRequest object

public void doGet (HttpServletRequest req, HttpServletResponse res)
 throws ServletException, IOException {

 // print the user agent and remote user name
 System.out.println("User agent: " + req.getHeader("User-Agent"));
 System.out.println("User name: " + req.getRemoteUser());
}

POST and GET Methods
POST and GET methods in the HTTP protocol instruct browsers how to pass
parameter data (usually in the form of name-value pairs) to applications. The
parameter data are usually generated by HTML forms.

Applications in the application server can use either method. The method that you
use is as secure as the underlying transport protocol (HTTP or S-HTTP).

When you use the POST method, parameters are passed in the request body, and
when you use the GET method, parameters are passed using the query string.
These methods are described in the HTTP 1.1 specification, which is available at the
W3C web site, http://www.w3c.org.

The limitation of the GET method is that the length of the value in a name-value
pair cannot exceed the maximum length for the value of an environment variable,
as imposed by the underlying operating system. In addition, operating systems
have a limit on how many environment variables you can define.

Generally, if you are passing large amounts of parameter data to the server, you
should use the POST method.

Depending on which method you choose to pass information to your servlet, it’s
entry point will be different. Servlets receiving information from the GET method,
will enter at the doGet() method. Similarly, servlets receiving POST data will
enter at the doPost() method.

Accessing Information from a Form
To pass information from a form to your servlet, the form needs to use either the
POST or GET method to pass the data to the servlet. Example 3–4 shows an HTML
file that can pass a name-value pair to a servlet called formServlet using the
GET method.
Developing JServlets 3-3

Generating HTTP Response Information
Example 3–4 HTML page that passes form data to a servlet

<HTML>
<HEAD><TITLE>Forms and Servlets</TITLE></HEAD>
<BODY>
 <FORM METHOD="GET" ACTION="/jservlets/formServlet">
 <P>What is your name: <INPUT TYPE=TEXT NAME="name" SIZE=8>
 </FORM>
</HTML>

Example 3–5 shows the servlet code that uses the getParameter() method to
retrieve the value passed in.

Example 3–5 Servlet to retrieve form data

public void doGet (HttpServletRequest req, HttpServletResponse res)
 throws ServletException, IOException {

 // print the name
 System.out.println("Hello " + req.getParameter("name"));
}

Generating HTTP Response Information
When a servlet responds to a HTTP request, the response object should include the
HTTP response headers and the generated HTML page. The headers describe the
properties of the response, such as the content type or the character set of the
HTML page. The generated information will be written back to the client using an
output stream.

The following topics are covered in this section:

■ Output Streams

■ Generating HTTP Response Headers

■ Generating HTML

■ Extending the oracle.html Package

■ Closing Streams in the System Class
3-4 Oracle Application Server 4.0 Developer’s Guide: JServlet Applications

Generating HTTP Response Information
Output Streams
You can use one of three output streams with the JServlet cartridge. They are:

■ HttpServletResponse stream — the standard servlet response object

■ HtmlStream stream — the oracle.html package’s output stream

■ System.out stream — the standard java output stream

All three streams function equally well and are all thread safe in the Oracle
Application Server context. You should develop applications using the stream you
are most comfortable with, but never use different streams in a single application.
Synchronization is not performed between the different streams so an application
writing to both the HtmlStream and System.out streams would not be thread safe
and could produce unexpected results.

Generating HTTP Response Headers
To generate HTTP response headers:

■ Use the setContentType() method to generate the first header line. More
header information can be added by using the appropriate
HttpServletResponse methods.

Content-type: text/html

■ Use the println() method to generate the other header lines as required.

All headers must be generated before you generate the content of your response.
An empty line will separate the headers from the content.

Example 3–6 Generating HTTP response headers using setContentType()

public void doGet (HttpServletRequest req, HttpServletResponse res)
 throws ServletException, IOException {

 // generate the MIME type and character set header
 res.setContentType("text/html; charset=us-ascii");

 // rest of code goes here
 ...
}

Note: The print methods in the oracle.html package write to
the HtmlStream stream by default.
Developing JServlets 3-5

Generating HTTP Response Information
Generating HTML
To generate HTML pages:

■ Write the HTML code directly to the response object.

■ Use the oracle.html package to generate your HTML page. This method writes
its output to the HtmlStream.

While both methods work equally well, you should only use one method in an
application. Writing to both the response object and the HtmlStream can have
unexpected results. When both are used, the code is not thread safe.

Writing to the Response Object
To write to the response object use the HttpServletResponse.getWriter.
println() method. Output written to this object will be sent to the client browser.

When writing directly to the response object you must also write any necessary
header information.

Example 3–7 Writing a HTML page to the response object

public void doGet (HttpServletRequest req, HttpServletResponse res)
 throws ServletException, IOException {

 // generate the MIME type and character set header
 res.setContentType("text/html; charset=us-ascii");

 // generate the HTML page
 Printwriter out = res.getWriter();
 out.println("<HTML>");
 out.println("<HEAD><TITLE>Test Page</TITLE></HEAD>");
 out.println("<BODY>");
 out.println("<H2>Sample text...</H2>");
 out.println("This is a sentence.");
 out.println("</BODY>");
 out.println("</HTML>");
}

3-6 Oracle Application Server 4.0 Developer’s Guide: JServlet Applications

Generating HTTP Response Information
Writing to the HtmlStream
The JServlet Toolkit includes the oracle.html package. This package can be used
to create HTML pages quickly and elegantly.

To use the classes in the oracle.html package:

1. Create an HtmlPage object to contain the HEAD and BODY sections of your
HTML page.

HtmlPage htmlpage = new HtmlPage();

You can specify the <TITLE> of your page in the HtmlPage constructor, or you
can specify it later when you create the HtmlHead object.

2. If you want to add tags to the <HEAD> area, you need an HtmlHead object.
You can get this in one of two ways:

■ Create the HtmlHead object and set it to the HtmlPage object:

HtmlHead htmlhead = new HtmlHead();
htmlhead.setBase("http://www.newbase.com"); // sets the BASE attribute
htmlpage.setHead(htmlhead); // binds htmlhead to htmlpage

■ Get the HtmlHead object from the HtmlPage object:

htmlpage.getHead().setBase("http://www.newbase.com");

3. Get the HtmlBody object for the page so that you can add content to the
<BODY>. As with the <HEAD> area, you can get the HtmlBody in two ways:

■ Create the HtmlBody object:

HtmlBody htmlbody = new HtmlBody();
htmlpage.setBody(htmlbody);

■ Get the object from the HtmlPage object:

htmlbody = htmlpage.getBody();

4. Add tags to the <BODY> section of the HTML page using classes in the
oracle.html package. For example, the following line adds an <H1>
heading to the page:

htmlbody.Heading(1, "The first heading");

See the JServlet Toolkit Reference for a complete class listing and usage examples
of the oracle.html package.
Developing JServlets 3-7

Generating HTTP Response Information
Example 3–8 HTML page generation with the oracle.html package

public void doGet (HttpServletRequest req, HttpServletResponse res)
 throws ServletException, IOException {

 // STEP 1. Create an HtmlPage object
 HtmlPage hp = new HtmlPage();

 // STEP 2. Add a head to the HTML page
 hp.getHead().setTitle("HTML Example”);

 // STEP 3. Get the body object from hp
 HtmlBody hb = hp.getBody();

 // STEP 4. Add a string object ("Hello World!") to the page
 hp.getBody().addItem("Hello World!");

 // STEP 5. Print the header and contents to the output stream.
 hp.printHeader(); // prints the header information
 hp.print(); // prints the HTML page
}

This generates the following:

Content-type: text/html

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
<!-- Generated by Oracle's Dynamic HTML Generation Package -->
<HTML>
<HEAD>
<TITLE>Hello World</TITLE>
</HEAD>
<BODY>
Hello World!</BODY>
</HTML>

Extending the oracle.html Package
You can create your own HTML components by deriving them from the Compoun-
dItem or Container classes. You can create high-level HTML classes that define
particular layout styles and use them as templates. For example, you can create a
CompanyBanner class that has a company logo, a hyperlink to its home page, and
another hyperlink to its copyright notice. Each time when you want to include a
3-8 Oracle Application Server 4.0 Developer’s Guide: JServlet Applications

Generating HTTP Response Information
company banner, you create a CompanyBanner object, and fill in the company
logo GIF file and the two URLs for the hyperlinks.

Example 3–9 Sample CompanyBanner class

class CompanyBanner extends CompoundItem {
 // Constructor takes an image and 2 links as arguments
 public CompanyBanner (String logoGIF,
 String homepageLink,
 String copyrightLink) {
 addItem(new Link(homepageLink,
 new Image(logoGIF, "Company Logo", IVAlign.TOP, true)));
 addItem(new Link(copyrightLink, "Copyright Notice"));
 } // constructor
} // CompanyBanner class

Then, you can simply add a CompanyBanner to your source code to generate
HTML:

// Add a company banner
bd.addItem(new CompanyBanner("img/oracle.gif", "http://www.oracle.com",
 "http://www.oracle.com/copyright.html");

You can also create HTML classes that encompass computation logic. For example,
you can create a BalanceSheet class that performs a query of a customer’s pur-
chase information from a database and formats the results in HTML. To create a bal-
ance sheet for a customer, simply instantiate a BalanceSheet object and specify
the customer’s identifier. Then add the BalanceSheet item to your HtmlPage .

Closing Streams in the System Class
You must not close streams from the System class in your servlet because the
JServlet cartridge redirects the output of the System.out and System.err
streams. If you close the streams, the output from the stream can appear as binary
data (if any) to the client. Instead of closing the stream, call the flush() method to
ensure that the contents of the stream are written.

Developers should note that it is possible to inadvertently close a System stream.
Example 3–10 demonstrates this.
Developing JServlets 3-9

Invoking JServlet Cartridges
Example 3–10 Inadvertently closing the system stream

OutputStreamWriter osw = new OutputStreamWriter(System.out);
osw.write('my message');
osw.close; // Closes the System.out stream. Don’t do this!
osw.flush; // Do this instead.

Invoking JServlet Cartridges
To invoke a JServlet cartridge, the URL must be in the following format:

http:// hostname [: port]/ virtual_path / java_class_name [path_info][? QUERY_STRING]

where:

■ hostname specifies the machine where the application server is running.

■ port specifies the port at which the application server is listening. If omitted,
port 80 is assumed.

■ virtual_path specifies a virtual path mapped to the JServlet cartridge.

■ java_class_name specifies the Java class to run. This class must contain an entry
point method. If a query string is included in the URL then there must be a
doGet() method.

■ path_info provides additional path information for the servlet. The path can be
accessed from the servlet using the HttpServletRequest.getPathInfo()
method.

■ QUERY_STRING specifies parameters (if any) for the Java class. The string
follows the format of the GET method. For example, multiple parameters are
separated with the & character and spaces are replaced with the + character. If
you use HTML forms to generate the string (as opposed to generating the
string yourself), the formatting is done automatically for you.

For example, if a browser sends the following URL:

http://karla:2525/games/addPlayer/template/player.html?name=Steve+Kerr&pos=guard

then the application server running on karla and listening at port 2525 would
handle the request. When the listener receives the request, it passes the request to
the WRB because it sees that the /games virtual path is configured to call a JServlet
cartridge. The WRB sends the request to a cartridge server that is running the
cartridge.
3-10 Oracle Application Server 4.0 Developer’s Guide: JServlet Applications

Destroying JServlet Instances
The JServlet runner searches the directories, jar, and zip files in its physical path
associated with the virtual path and then the CLASSPATH for the addPlayer class
specified in the URL. This class uses the additional path and query information.
The class’ doGet() method is executed since the information is sent in the URL.
The doGet() method will need to call the getPathInfo() method to use find the
template/player.html file.

The name parameter gets the value “Steve Kerr”, the + is replaced by a space
character before the class can use it. The pos parameter gets the value “guard”.

To use the values of the parameters in your Java class, use the getParameter()
method in the HttpServletRequest class.

Example 3–11 Getting parameters from a URL

public class addPlayer extends HttpServlet {
 public void doGet (HttpServletRequest req, HttpServletResponse res)
 throws ServletException, IOException {

 // get the parameters
 String player = req.getParameter("name");
 String position = req.getParameter("pos");

 // do something with the parameters
 ...
 } // doGet
} // addPlayer

Destroying JServlet Instances
A servlet’s destroy() method will only be called when the cartridge server is
stopped or shut down. The Oracle Application Server servlet engine guarantees
that no other methods of a servlet are being executed before the destroy method is
called.

Although the destroy() method is not called until all pending requests for a
servlet have completed or timed out, all new requests for the to-be-destroyed
instance will be refused.
Developing JServlets 3-11

Runtime Interpreter Options
Runtime Interpreter Options
In addition to the application and cartridge configuration parameters, you can
specify the runtime options of Sun’s Java interpreter in a Java cartridge
environment.

To specify these options for the cartridge, you use the Java Environment form. The
options you specify apply to the entire application, but you can set different
options for different applications.

Table 3–1 lists the names and valid values of these options. This is a complete list
and no other runtime options are supported.

Note: The basic cartridge configuration options can be found in
“Cartridge and Component Administration” in the Administration
Guide.

Table 3–1 Mapping Java interpreter options to cartridge configuration flags

Sun’s Java
interpreter option

Option name in the Java
Environment form Value

-verbose VERBOSE true or false

-noasyncgc NOASYNCGC true or false

-verbosegc VERBOSEGC true or false

-checksource CHECKSOURCE true or false

-ss C_STACK A number followed by M, m, K, or k,
where M or m indicates megabytes,
and K or k indicates kilobytes.

-oss JAVA_STACK A number followed by M, m, K, or k,
where M or m indicates megabytes,
and K or k indicates kilobytes.

-ms INITIAL_HEAP A number followed by M, m, K, or k,
where M or m indicates megabytes,
and K or k indicates kilobytes.

-mx MAX_HEAP A number followed by M, m, K, or k,
where M or m indicates megabytes,
and K or k indicates kilobytes.

-verify VERIFY true or false

-verifyremote VERIFYREMOTE true or false
3-12 Oracle Application Server 4.0 Developer’s Guide: JServlet Applications

Runtime Interpreter Options
Note the following:

■ Sun’s “-debug” option is not supported.

■ Multiple “SYSTEM_PROPERTY” options can be used.

■ “true/false” values are case-sensitive.

For example, if you want to turn off the asynchronous garbage collector, set
maximum heap size to 32 Mbytes, and define system properties user.default
and password.default , the Java Environment form for your application would
look like the following:

Figure 3–1 Example Java Environment form

The options and their values are written to the [APPLICATION.<appName>.
JAVA] section of the wrb.app file:

[APPLICATION.myApp.JAVA]
NOASYNCGC = true
MAX_HEAP = 32M
SYSTEM_PROPERTY = user.default=scott
SYSTEM_PROPERTY = password.default=tiger

-noverify NOVERIFY true or false

JAVA_COMPILER symcjit (for Windows NT)

sunwjit (for Solaris)

-D SYSTEM_PROPERTY prop=value

Table 3–1 Mapping Java interpreter options to cartridge configuration flags

Sun’s Java
interpreter option

Option name in the Java
Environment form Value
Developing JServlets 3-13

Runtime Interpreter Options
3-14 Oracle Application Server 4.0 Developer’s Guide: JServlet Applications

Advanced JServlet Program
4

Advanced JServlet Programming

This chapter will discuss advanced programming topics for the JServlet cartridge.

Contents
■ Using Sessions

■ Inter-Cartridge Exchange (ICX) Service

■ Servlet Concurrency

■ Spawning Sub-Threads

■ Name Spaces of Java Classes

Using Sessions
Since servlets are inherently stateless and serially reusable, clients’ state
information cannot be stored directly in the servlet. To provide this functionality,
JServlet developer’s can implement the HttpSession package with some extensions.
The session API allows developer’s to preserve state information across requests to
the servlet.

Sessions allow you to associate information with a particular user. This means that
the same application can be used in multiple instances without losing data
integrity. Using sessions guarantees that the next request from an application will
go to the proper instance. The JServlet cartridge supports sessions through a
programming interface. These programmable sessions store their state information
independently from the servlet instance.
ming 4-1

Using Sessions
Implementing programmable sessions is similar to the implementing a Java Servlet
with the Java Servlet API Specification. However, the JServlet cartridge does
provide some additional functionality with the distributed session model.

Programmable Sessions
Programmable sessions are identified by an internally generated and globally
unique string. This string is created when a session is begun and is then
subsequently used by the cartridge runtime and the application to identify a
session. This session identifier is passed to the client as part of a browser cookie or
if a cookie is not available, by URL rewrite.

Using the oracle.OAS.servlet.http.HttpSession package , sessions are
managed by the cartridge runtime using cache management system to save and
restore session information. All sessions will have a “maximum idle time”
associated with them. This is the maximum time allowed between accesses to a
session. If this time is exceeded, the session and its associated state will be removed
from the cache. Future attempts to access an expired session will generate an
exception.

The maximum idle time can be set by:

■ the application using the setMaxInactiveInterval method.

■ the OAS Manager using the application’s Web Parameters form. See the
Administration Guide for more information.

If the setMaxInactiveInterval method is not used in the application, the value in the
Web Parameters form will be used. Both methods use a default value of 600
seconds (10 minutes).

An application will have direct access to state objects stored within a session using
the session class methods getValue , putValue , and removeValue . The session
manager views all state objects as Java Objects, so the structure and content of the
state stored within a session can be defined by the application. State objects are
identified by application defined names. Calling putValue on an existing object in
the session will replace it with a new value. Only the latest version of a particular
object will be saved. Access to a session is serialized so only one user instance may
access a session and the session objects at a time.

Environment Variables
In addition to environment variable settings specified in Table 2–1, "Environment
variables for JServlet applications" on page 2-2, add the following file to your
CLASSPATH when using sessions.
4-2 Oracle Application Server 4.0 Developer’s Guide: JServlet Applications

Using Sessions
■ $ORACLE_HOME/orb/4.0/classes/session.jar (Unix only)

■ $ORACLE_HOME/orb/classes/session.jar (NT only)

Example 4–1 Creating a JServlet session

import java.io.*;
import java.util.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class SessionServlet extends HttpServlet {

 public void doGet (HttpServletRequest req, HttpServletResponse res)
 throws ServletException, IOException {

 HttpSession session;
 // then write the data of the response
 PrintWriter out = res.getWriter();
 String UseCookie = req.getParameter("usecook");
 oracle.OAS.servlet.ServletRequest req1 =
 (oracle.OAS.servlet.ServletRequest) req;

 String Invalid = req.getParameter("invalid");
 String NoArg = req.getParameter("noarg");
 String LocalSess = req.getParameter("local");
 String distSess = req.getParameter("distrib");

 if (Invalid == null) Invalid = "false";
 if (NoArg == null) NoArg = "false";
 if (distSess == null) distSess = "false";

 // Create or get the session object
 if (distSess.equals("true")) {
 session = req1.getSession(true,true,false);
 } else {
 if (NoArg.equals("true"))
 session = req.getSession();
 else
 session = req.getSession(true);
 } // if-else

 if (UseCookie != null) {
 if (UseCookie.equals("true"))
 req1.useCookie(true);
Advanced JServlet Programming 4-3

Using Sessions
 else
 req1.useCookie(false);
 } // if

 // set content type and other response header fields first
 res.setContentType("text/html");

 out.println("<HEAD><TITLE> "+"SessionServlet Output " +
 "</TITLE></HEAD><BODY>");
 out.println("<h1> SessionServlet Output </h1>");

 if (Invalid.equals("true")) {
 session.invalidate();

 session = req.getSession(false);
 if (session == null)
 out.println("req.getSession(false): PASSED
");
 else
 out.println("req.getSession(false): FAILED
");

 if (NoArg.equals("true"))
 session = req.getSession();
 else
 session = req.getSession(true);

 if (UseCookie != null) {
 if (UseCookie.equals("true"))
 req1.useCookie(true);
 else
 req1.useCookie(false);
 } // if UseCookie != null
 } // if Invalid.equals("true")

 oracle.OAS.servlet.http.HttpSession session1 =
 (oracle.OAS.servlet.http.HttpSession) session;

 if (LocalSess != null) {
 if (LocalSess.equals("true"))
 session1.localSession(true);
 else
 session1.localSession(false);
 } // if LocalSess != null

 Integer ival = (Integer) session.getValue("sessiontest.counter");
 if (ival==null)
4-4 Oracle Application Server 4.0 Developer’s Guide: JServlet Applications

Using Sessions
 ival = new Integer(1);
 else
 ival = new Integer(ival.intValue() + 1);
 session.putValue("sessiontest.counter", ival);

 // Expire the session after 3 minutes Idle period
 session.setMaxInactiveInterval(180);
 out.println("You have hit this page " + ival + " times.<p>");
 out.println("Click <a href=" +
 res.encodeUrl(HttpUtils.getRequestURL(req).toString()) + ">here");
 out.println(" to ensure that session tracking is working even " +
 "if cookies aren't supported.
");
 out.println("Note that by default URL rewriting is not enabled" +
 "due to it's expensive overhead");

 out.println("<h3>Request and Session Data:</h3>");
 out.println("Session ID in Request: " +
 req.getRequestedSessionId());
 out.println("
Session ID in Request from Cookie: " +
 req.isRequestedSessionIdFromCookie());
 out.println("
Session ID in Request from URL: " +
 req.isRequestedSessionIdFromUrl());
 out.println("
Valid Session ID: " +
 req.isRequestedSessionIdValid());
 out.println("
Local Session: " +
 session1.isLocalSession());
 out.println("<h3>Session Data:</h3>");
 out.println("New Session: " + session.isNew());
 out.println("
Session ID: " + session.getId());
 out.println("
Creation Time: " + session.getCreationTime());
 out.println("<I>(" + new Date(session.getCreationTime()) + ")</I>");
 out.println("
Last Accessed Time: " +
 session.getLastAccessedTime());
 out.println("<I>(" + new Date(session.getLastAccessedTime()) + ")</I>");

 try {
 out.println("
Max Inactive Interval: " +
 session.getMaxInactiveInterval() + " seconds");
 } catch (Exception e) {
 out.println("
Max Inactive Interval: Invalid Session");
 } // try

 HttpSessionContext context = session.getSessionContext();

 if (context != null) {
Advanced JServlet Programming 4-5

Using Sessions
 out.println("<h3>Session Context Data:</h3>");

 for (Enumeration e = context.getIds(); e.hasMoreElements() ;) {
 out.println("Valid Session: " + (String)e.nextElement()+ "
");
 } // for
 } // if context != null

 // After 5 times invalidate the session
 if (ival.intValue() == 5) {
 out.println("

" +
 "Already accessed 5 times, invalidating the session."+"");
 session.invalidate();
 } // if
 out.println("</BODY>");
 out.close();
 } // doGet()

 public String getServletInfo() {
 return "A Session Servlet";
 }
} // SessionServlet class

Local and Distributed and Sessions
The two models for creating sessions with the JServlet cartridge are local and
distributed. They have the same functionality, but each offers advantages over the
other. You can choose the model that is best suited for your application. By default,
local sessions are created.

Local sessions store state information within the process running the servlet. This
provides for quick retrieving and updating of state information. As a result,
applications created under this model will perform more efficiently.

To create a distributed session, use the getSession(create, distributed,
secure) method where distributed is true.For example,

oracle.OAS.servlet.http.HttpSession sess =
oracle.OAS.servlet.ServletRequest.getSession(true, true, false)

Sessions started under secure sessions will be based on the local session model to
preserve the security of the state. To create a secure connection, use the
HttpSession.getSession(create, distributed, secure) method
where distributed is false and secure are true . Typically, local sessions spool
4-6 Oracle Application Server 4.0 Developer’s Guide: JServlet Applications

Using Sessions
state objects to the server’s disk, however, secure sessions will not write any
information to the disk.

In the distributed session model, the application’s state is replicated to other
processes and/or nodes. If the original process should die for some reason, session
information will automatically be propagated to another instance while
maintaining the original session identifier. This adds a high level of fault tolerance
to your JServlet applications. To allow this propagation, session objects must
implement the java.io.Serializable interface.

When using distributed sessions, the following packages must be imported:

■ oracle.OAS.servlet.http.HttpSession

■ oracle.OAS.servlet.ServletRequest.

Binding Session Objects
Session objects can perform actions when they are bound (added) or unbound
(removed) from a session. Using the HttpSessionBindingListener interface,
objects can be notified as they are bound and unbound. This also marks the session
as a local session.

After implementing the HttpSessionBindingListener interface, you must
implement its valueBound() and valueUnbound() methods. These methods
can be used to coordinate shared resources and begin and end transaction services.

When a servlet that implements the interface calls the HttpSession.putValue()
method, the valueBound() method will be called. The valueUnbound() method
will be called for a bound object when:

■ calling removeValue()

■ timing out the session

■ invalidating the session.

Example 4–2 Binding session events

public class SessionBindTest extends HttpServlet {
 static PrintWriter out;

Note: If the java.io.Serializable interface is not
implemented, the session will be marked as a local session. This
overrides all methods of creating a distributed session.
Advanced JServlet Programming 4-7

Using Sessions
 public void doGet (HttpServletRequest req, HttpServletResponse res)
 throws ServletException, IOException {
 // Get the current session object, create one if necessary
 HttpSession session = req.getSession(true);

 // set content type and other response header fields first
 res.setContentType("text/html");

 // then write the data of the response
 out = res.getWriter();

 out.println("<HTML>");
 out.println("<HEAD><TITLE>Session Binding Event Test</TITLE></HEAD>");
 out.println("<BODY>");

 // Add a custom listener
 session.putValue("bindings.listener",
 new CustomBindingListener(getServletContext()));
 // out.println("
This page intentionally left blank");
 out.println("</BODY>");
 out.close();
 } // doGet

 public String getServletInfo() {
 return "A Servlet to test Session Binding Events.";
 } // getServletInfo
} // SessionBindTest class

class CustomBindingListener implements HttpSessionBindingListener {
 // Save a ServletContext to be used for its log() method
 ServletContext context;

 public CustomBindingListener(ServletContext context) {
 this.context = context;
 }

 public void valueBound (HttpSessionBindingEvent event) {
 // log the current date and time
 context.log("[" + new Date().toString() + "]");
 String state = "BOUND as " + event.getName();
 state += " to " + event.getSession().getId();
 // log, print and save the current state
 context.log(state);
 SessionBindTest.out.println("
" + state);
 saveState(state);
4-8 Oracle Application Server 4.0 Developer’s Guide: JServlet Applications

Inter-Cartridge Exchange (ICX) Service
 } // valueBound

 public void valueUnbound (HttpSessionBindingEvent event) {
 context.log("[" + new Date().toString() + "]");
 String state = "UNBOUND as " + event.getName();
 context.log(state);
 SessionBindTest.out.println("
" + state);
 saveState(state);
 } // valueUnbound

 public void saveState(String state) {
 try {
 String log_file = "SessionBinding.log";
 FileWriter fileWriter = new FileWriter(log_file,true);
 fileWriter.write(new Date().toString() + "\n");
 fileWriter.write(state + "\n");
 fileWriter.close();
 return;
 } catch (IOException e) {
 System.err.println("Error saving session state.");
 }
 } // saveState
} // CustomBindingListener class

Changes from the JWeb Session Model
The JWeb cartridge supported configurable sessions. Only programmable sessions
are supported by the JServlet cartridge. To migrate an existing JWeb application
that uses sessions, convert the application to the programmable model completely.

Using class and static members to store state information for sessions is also not
supported for the JServlet cartridge. The servlet session APIs should be used to
store session state information.

Inter-Cartridge Exchange (ICX) Service
The JServlet Toolkit provides classes for accessing Oracle Application Server’s
Inter-cartridge Exchange service (ICX). ICX allows one cartridge to invoke another
cartridge and retrieve output from it. With this communication service, you can
produce applications with output from different cartridges, where each one is
specialized in handling a certain type of request or producing a certain type of
result. For example, you can write a Java application to search for the users logging
Advanced JServlet Programming 4-9

Inter-Cartridge Exchange (ICX) Service
on to a system, then invoke a PL/SQL cartridge to generate a report of the users’
information from the database and include it in the HTML output.

The oracle.OAS.Services.ICX package contains the following classes:

■ ICXRequest — sends ICX requests

■ ICXResponse — the response to ICX requests

■ ICXInitFailedException — an exception that is thrown when creating a
new ICXRequest fails

■ IncompatibleWithProtocolException — an exception that is thrown
when a wallet is used with the http scheme
4-10 Oracle Application Server 4.0 Developer’s Guide: JServlet Applications

Inter-Cartridge Exchange (ICX) Service
ICXRequest contains methods that enable you to perform the following tasks:

The sequence of calls that you would invoke to send an ICX request follows in
Example 4–3.

Example 4–3 Sending an ICX request

// import packages
import oracle.owas.wrb.services.http.*;
import oracle.OAS.Services.ICX.*;
import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

// set up the ICXRequest object
ICXRequest icxreq = new ICRequest("http:// machine : port / path ");

// set up properties for the request (for example, method, headers, content,
// security, transaction)

Table 4–1 Methods in ICXRequest

To... Use this method...

Set up an ICX request ICXRequest() , the ICXRequest constructor

Specify the request method (for example,
POST or GET)

setMethod()

Specify additional headers to include in the
request

setHeader() or setHeaders()

Specify the contents of the request setContent() or setContents()

Specify user and password information setAuthInfo()

Use SSL with the ICX request setWalletInfo()

Enable transactions enableTransaction()

Disable transactions disableTransaction()

Send the request connect()
Advanced JServlet Programming 4-11

Inter-Cartridge Exchange (ICX) Service
// send the request and get an ICXResponse object
ICXResponse response = icxreq.connect();
if (icxresp == null) {
 // if the response is null, then print an error message and return.
 System.err.println("null response");
 return;
}

Note that you must specify a fully qualified URL in the ICXRequest constructor.
You have to specify the scheme (http or https), the server, the port number (if
necessary), and the virtual path. You cannot specify just the virtual path.

The connect() method returns an ICXResponse object or null if an error
occurred. You can then retrieve data from the ICXResponse object using the
following methods:

Cookies
The header for ICXRequest is the same as the original header, except that cookies
are not included. To include cookie information in the header, you have to call
setHeader("Cookie", string) explicitly.

Table 4–2 Methods in ICXResponse

To... Use this method... Return value

Get header information getHeader() or
getHeaders()

Object for getHeader()

Hashtable for getHeaders()

Get content information getContent() InputStream

Get the status of the
response

getStatusCode() and
getReasonPhrase()

int for getStatusCode()

String for getReasonPhrase()

Get the realm getRealm() String

Get the HTTP version getHTTPVersion() String

Determine if the request
was sent via a proxy

usingProxy() boolean

Note: You cannot create an ICXResponse object using new. You
have to get the object from the return value of the connect()
method.
4-12 Oracle Application Server 4.0 Developer’s Guide: JServlet Applications

Inter-Cartridge Exchange (ICX) Service
Setting Multiple Fields in Headers or Content
You can set multiple fields in the header or content using setHeaders() or
setContents() methods. These methods use a Hashtable object to contain the
fields. The keys in the hash table are the field names, and the values must be
String or Vector objects. If the value is a Vector object, it must be a Vector of
Strings .

Transactions

If the target of an ICX request is for a cartridge that uses the Transaction service,
you have to enable the transactional attribute before you send the ICX request. To
enable the transactional attribute, call the enableTransaction() method in the
ICXRequest class.

icxreq = new ICXRequest(url); // create the request
icxreq.enableTransaction(); // enable transaction

// set up other attributes of the request
ICXResponse icxresp = icxreq.connect(); // send the request

SSL
To use SSL with ICX requests, the URL of the ICX request uses the https scheme,
instead of the http scheme. The URL is specified in the ICXRequest constructor.

When using SSL with ICX, you need to associate the ICX request with a wallet. A
wallet contains private keys, certificates, and trust points that SSL can use. To
define and manage wallets, you use the Oracle Wallet Manager. See the Security
Guide for details.

Use the ICXRequest.setWalletInfo() method to associate ICX requests with
wallets. The syntax of the method is:

public void setWalletInfo(String walletloc, String password)
 throws IncompatibleWithProtocolException

Note: Transactions are available only in the Enterprise Edition of
Oracle Application Server.
Advanced JServlet Programming 4-13

Inter-Cartridge Exchange (ICX) Service
The method takes two parameters: a wallet location and the wallet’s password. The
wallet location is specified using a WRL (wallet resource locator). A WRL has the
following syntax:

<Wallet Type>:<Wallet Type Parameters>

■ wallet type specifies that the wallet is stored in a flat file in the operating system.
Its value is “file ”.

■ wallet type parameters specify the location of the wallet. For wallets stored in a
flat file, the wallet type parameter is a full path to the wallet.

The following WRLs specify that the wallet is stored in the /home/wallets directory
or the c:\wallets\new_projects directory.

file:/home/wallets

file:c:\wallets\new_projects

The wallet’s password is assigned when the wallet was created.

You must ensure that the scheme for ICX requests that use wallets is https, not http.
Otherwise, the method throws the IncompatibleWithProtocolException
exception. The scheme is specified in the ICXRequest constructor.

Exceptions and Errors
The ICXInitFailedException exception is thrown when an ICXRequest object
cannot be created. The object cannot be created because of low memory and/or
failure to initialize required WRB components such as the authentication server. If
you get this exception, you cannot perform any ICX-related operations.

You should check the return value of ICXRequest.connect() . If an error occurs,
the method returns null. In this case, you do not have an ICXResponse object; you
should return an error message to the user and stop processing the ICX request.

The IncompatibleWithProtocolException exception is thrown by
ICXRequest.setWalletInfo() when you associate a wallet with a non-SSL
ICX request, that is, the scheme of the ICX request is http, instead of https.
4-14 Oracle Application Server 4.0 Developer’s Guide: JServlet Applications

Inter-Cartridge Exchange (ICX) Service
Example (not using SSL)
The following example sends a request to a PL/SQL cartridge. It also sends a user
ID and password to the cartridge:

Example 4–4 Sending a request to a PL/SQL cartridge without using SSL

import oracle.owas.wrb.services.*;
import oracle.owas.wrb.services.http.*;
import oracle.OAS.Services.ICX.*;
import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class ProcessRequestFromBrowser extends HttpServlet {
 public void doPost(
 HttpServletRequest req,
 HttpServletResponse res) throws ServletException, IOException {

 String vpath = "/hr/getEmp";
 String method = "POST";
 String user, password;
 ICXRequest icxreq = null;
 String machine = req.getServerName();
 String port = req.getServerPort();
 String url = "http://" + machine + ":" + port + vpath;

 // set up an ICX request
 try {
 icxreq = new ICXRequest(url);
 } catch (java.net.MalformedURLException e) {
 System.err.println("Invalid URL");
 } catch (ICXInitFailedException e) {
 // send appropriate error message to client browser; something like
 // "Unable to ccomplete your request at this time. Please try again."
 System.err.println("Unable to create an ICX request.");
 }

 // set the method for the ICX call to be POST
 try {
 icxreq.setMethod(method);
 } catch (java.net.ProtocolException e) {
 System.err.println("Unable to set method");
 }
Advanced JServlet Programming 4-15

Inter-Cartridge Exchange (ICX) Service
 // pull out the username and password from the headers.
 // Retrieve "user" and "password" from the HTTP header.
 user = req.getParameterValue("user");
 password = req.getParameterValue("password");

 // set the username and password.
 icxreq.setAuthInfo(user, password);

 // send the ICX request. connect() returns an ICXResponse object.
 ICXResponse icxresp = icxreq.connect();
 if (icxresp==null) {
 // if the response is null, then print an error message and return.
 System.err.println("null response")
 return;
 }

 // get the status of the response
 int status = icxresp.getStatusCode();
 if (status >= 400) { // an error occurred
 System.err.println(icxresp.getReasonPhrase());
 } else {
 // ICX request successful, get data from the response
 InputStream contentStream = icxresp.getContent();
 // process the data using methods in the BufferedInputStream class
 ...
 } // if
 } // doPost()
} // class

Example (using SSL)
The following example sends a request to a PL/SQL cartridge using SSL.

Example 4–5 Sending a request to a PL/SQL cartridge using SSL

import oracle.owas.wrb.services.*;
import oracle.owas.wrb.services.http.*;
import oracle.OAS.Services.ICX.*;
import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
4-16 Oracle Application Server 4.0 Developer’s Guide: JServlet Applications

Inter-Cartridge Exchange (ICX) Service
public class ProcessRequestFromBrowser_SSL extends HttpServlet {
 public static void doPost (
 HttpServletRequest req,
 HttpServletResponse res) throws ServletException, IOException {

 String vpath = "/hr/getEmp";
 String method = "POST";
 ICXRequest icxreq = null;
 String machine = req.getServerName();
 String port = req.getServerPort();
 // the scheme has to be https to use wallets
 String url = "https://" + machine + ":" + port + vpath;
 String wallet = "file:/home/joe/myWallet/";
 String wallet_password = "topsecret";

 // set up an ICX request
 try {
 icxreq = new ICXRequest(url);
 } catch (java.net.MalformedURLException e) {
 System.err.println("Invalid URL");
 // send appropriate error message to client browser; something like
 // "Unable to ccomplete your request at this time. Please try again."
 } catch (ICXInitFailedException e) {
 System.err.println("Unable to create an ICX request");
 }

 // set the method for the ICX call to be POST
 try {
 icxreq.setMethod(method);
 } catch (java.net.ProtocolException e) {
 System.err.println("Unable to set method");
 }

 // set the wallet
 try {
 icxreq.setWalletInfo(wallet, wallet_password);
 } catch (IncompatibleWithProtocolException e) {
 System.err.println("Unable to set wallet");
 }
Advanced JServlet Programming 4-17

Servlet Concurrency
 // send the ICX request. connect() returns an ICXResponse object.
 ICXResponse icxresp = icxreq.connect();
 if (icxresp==null) {
 // if the response is null, then print an error message and return.
 System.err.println("null response")
 return;
 }

 // get the status of the response
 int status = icxresp.getStatusCode();
 if (status >= 400) { // an error occurred
 // call user-defined method to return error message to the browser
 // returnErrorMessage(icxresp.getreasonPhrase());
 System.err.println(icxresp.getReasonPhrase());
 } else {
 // ICX request successful
 // get data from the response
 InputStream contentStream = icxresp.getContent();
 // process the data using methods in the BufferedInputStream class
 ...
 } // if
 } // doPost()
} // class

Servlet Concurrency
In Oracle Application Server, a cartridge can run in multiple threads by adjusting
the number of threads parameter in the cartridge configuration form. Also,
adjusting the number of JServlet runners allows for the concurrent execution of
your cartridge logic. See the Administration Guide for more information on cartridge
configuration.

Oracle Application Server uses a thread pool to implement thread concurrency for
the JServlet cartridge. The thread pool and its threads are also maintained and
managed by Oracle Application Server. Because of this, applications cannot submit
a thread to the pool or use an application created thread to service incoming
requests. All incoming requests will be serviced by threads created by the JServlet
runtime.
4-18 Oracle Application Server 4.0 Developer’s Guide: JServlet Applications

Servlet Concurrency
Thread Safety and the SingleThreadModel Interface
Servlets can indicate that they are thread safe to the JServlet cartridge by
implementing (or not implementing) the SingleThreadModel interface. Servlets
that implement this interface are assumed to have code that is thread safe on the
class level. It is, therefore, the developer’s responsibility to ensure that the code is
thread safe. The servlet instance is assumed to not be thread safe. This means that
Oracle Application Server will not reenter methods of a servlet instance, but can
call methods of different servlet instances at the same time.

Objects Declared as Static
Regardless of the threading model, declaring objects as static will cause the
objects to be shared by all threads in the process. Care should be exercised when
declaring variables as static because all instances of a servlet can change the value
of the variable.

Servlets That Implement SingleThreadModel
In order to achieve concurrency on servlets that implement SingleThreadModel ,
Oracle Application Server instantiates multiple servlet instances in one process. By
having multiple instances and making simultaneous calls to the service()
methods of the different instances, Oracle Application Server achieves concurrency.

Oracle Application Server guarantees that there will be enough servlet instances to
service simultaneous requests for these servlets. These instances will be created on
demand as requests are received. As instances become free, they will be reused
when possible. These instances will also be kept alive for the lifetime of the
cartridge instance once instantiated.

Servlets That Do Not Implement SingleThreadModel
For servlets that do not implement the SingleThreadModel, Oracle Application
Server instantiates exactly one servlet instance per cartridge process and makes
calls to the instance upon receiving each request. These servlets are assumed to be
fully thread safe.

These instances will be threaded if there are simultaneous requests for the
cartridge. A servlet instance will be instantiated when the first request for the
servlet is loaded into the cartridge server process. The servlet instances stay alive
for the lifetime of the JServlet runner and are reused for any subsequent requests
for the same servlet.
Advanced JServlet Programming 4-19

Servlet Concurrency
A JServlet Threading Scenario
Figure 4–1 illustrates the relationship between the various threading components
described earlier in this section.

Figure 4–1 The relationship between threading components

In this figure, myBank is an instance of a servlet that does not implement
SingleThreadModel. The myAcct instances are servlet instances of a servlet that
does implement the single thread model. Currently, myBank is handling three
requests and myAcct servlet is handling two.

Because myBank does not implement the model, it is assumed to be fully thread
safe. Therefore, it is safe to process multiple requests through the instances. If
another request comes in for myBank’s servlet before the three current requests
finish, a fourth thread will be assigned to this instance.

The servlet for myAcct implements the SingleThreadModel interface and
therefore the instance is not thread safe. (Note, only the instance for myAcct is not
thread safe, the code is assumed to be thread safe at the class level.) For each
request to this servlet, a new instance is required. If another request for myAcct’s
servlet occurs before the two current requests complete, a new instance will be
created and a new thread will be assigned to the new instance.

Cartridge Server Process

myBank myAcct

JServlet Runner

Servlet Instances

Threads

myAcct
4-20 Oracle Application Server 4.0 Developer’s Guide: JServlet Applications

Spawning Sub-Threads
Changes from the JWeb Threading Model
Since each JWeb cartridge instance had its own class loader, multithreading could
be achieved with code that was not thread safe. The JServlet cartridge only uses
one class loader for each JServlet runner and therefore, requires that the JServlet
code is thread safe.

Spawning Sub-Threads

You must follow these guidelines when spawning sub-threads:

■ Each thread must be associated with an instance of the
oracle.owas.wrb.WRBRunnable class. This class enables the thread to use
classes in the oracle.html package and also System.out for generating HTML
output.

■ The entry point thread, the thread running the entry method — doGet() or
doPost() — must wait for the sub-threads to finish before it returns. Some
synchronization may be necessary to accomplish this.

You must follow these guidelines because the servlet engine within the JServlet
cartridge can run multiple servlet instances simultaneously. As a result, it needs to
be able to associate user-created threads with the correct clients.

Example 4–6 creates four threads, and each thread prints its name to the HTML
output using classes from the oracle.html package. Note that the HtmlPage is
passed to the thread.

Example 4–6 Creating and adopting sub-threads

import oracle.owas.wrb.*;
import oracle.html.*;
import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;

Note: Spawning sub-threads is not recommended because it
limits Oracle Application Server’s load balancing and management
capabilities.
Advanced JServlet Programming 4-21

Spawning Sub-Threads
public class HelloThread extends HttpServlet {
 public void doPost(HttpServletRequest req,
 HttpServletResponse res)
 throws ServletException, IOException {

 HtmlPage hp = new HtmlPage("Html page from main");

 // create four threads; each thread runs and completes before the next
 // thread is created.
 // MTHtml is a user-defined class. See below for the definition.
 for (int i=0; i<4; i++) {
 try {
 Runnable r = new MTHtml(hp); // user-defined class extending Thread
 Thread t = new WRBRunnable(r); // adopt r into the WRB context
 t.start(); // start the thread; this executes MTHtml's run() method
 t.join(); // wait for the thread to complete
 } catch (oracle.owas.wrb.WRBNotRunningException e) {
 System.err.println("The WRB is not running.");
 } catch (java.lang.InterruptedException e) {
 System.err.println("The sleeping thread was interrupted.");
 } // try
 } // for

 hp.printHeader();
 hp.print();
 } // doGet()
} // HelloThread class

class MTHtml extends Thread {
 private HtmlPage hp;

 public MTHtml(HtmlPage hp) {
 super();
 this.hp = hp;
 } // constructor

 public void run() {
 String thrName = Thread.currentThread().getName();
 HtmlBody hb = hp.getBody();
 hb.addItem("HelloWorld from " + thrName);
 } // run()
} // MTHtml class
4-22 Oracle Application Server 4.0 Developer’s Guide: JServlet Applications

Name Spaces of Java Classes
The JServlet cartridge produces the following output:

Content-type: text/html

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
<!-- Generated by Oracle's Dynamic HTML Generation Package -->
<HTML>
<HEAD>
<TITLE>Html page from main</TITLE>
</HEAD>
<BODY>
HelloWorld from Thread-5HelloWorld from Thread-7HelloWorld from
Thread-9HelloWorld from Thread-11</BODY>
</HTML>

Name Spaces of Java Classes
The name space of your Java classes depends on the location of the class.
Figure 4–2 shows the different name spaces:

Figure 4–2 Name spaces of Java classes

When a JServlet cartridge loads a class from CLASSPATH, it loads it into the
system name space. This means that all other classes, including those in the
cartridge name space, can access it. In the figure above, the class gwynn was loaded
from CLASSPATH.

When a JServlet cartridge loads a class from the physical path associated with the
cartridge’s virtual path, it loads the class into the name space of the cartridge.

ruth
sisler ruth

gwynn

Cartridge
name space

System
name space

ripken

JServlet Runner 2
JServlet Runner 1

JServlet Runner 3

Classes loaded

Classes loaded
from CLASSPATH

from physical paths
Advanced JServlet Programming 4-23

Name Spaces of Java Classes
Classes in the system name space and classes in other cartridges cannot access that
class instance. In the figure above, the ruth and ripken classes can access each
other in JServlet Runner 1, and access classes in the system name space (for
example, gwynn), but they cannot access classes in the name spaces of other
cartridges. For example, they cannot access sisler in JServlet Runner 2 or ruth in
JServlet Runner 3.

When designing your application, consider what other classes your classes access.
If you load a class into the system name space (that is, the class is found in
CLASSPATH), then it cannot access classes that are found in physical paths. You
should place your commonly accessed classes in CLASSPATH, and place only
those classes to which you want to limit access in physical paths.

The following related topics are discussed in this section:

■ Reflection APIs

■ Using Packages

■ Adding Classes with Native Libraries

Reflection APIs
Generally, classes in CLASSPATH cannot create new instances of or invoke
methods on classes in physical paths.

However, if you use the Java Reflection APIs, you can invoke methods on classes in
physical paths from classes in CLASSPATH. You cannot create new instances of
classes in physical paths from classes in CLASSPATH.

The general steps to invoke methods on physical path classes from CLASSPATH
classes are:

1. Get a reference to the class instance in physical path. The class instance must
already exist.

2. Get the name of the method that you want to invoke and prepare the
parameters for the method. This is an array of Object s passed to the
invoke() method.

3. Invoke the method using java.lang.reflect.Method.invoke() .

In the following example, class ruth creates an instance of class gwynn , and the
instance of class gwynn invokes a method on ruth . ruth is loaded from a physical
path, while gwynn is loaded from CLASSPATH.
4-24 Oracle Application Server 4.0 Developer’s Guide: JServlet Applications

Name Spaces of Java Classes
public class ruth {
 public void foo() {
 // create a new instance of fred
 gwynn f = new gwynn();
 // invoke a method on gwynn, and pass an instance of ruth
 f.doSomething(this);
 }
}

public class gwynn {
 public void doSomething(Object ruthInstance) {
 Class[] params = null;
 Class ruthClass = ruthInstance.getClass();
 Method homerun = ruthClass.getMethod("method_in_ruth", params);

 // invoke the method "method_in_ruth" which is in ruth
 homerun.invoke(ruthInstance, null);
 }
}

See the Java Reflection API documentation for details.

Using Packages
It is recommended that you place all your Java class files accessed by a JServlet
cartridge directly in the physical path directory associated with the cartridge’s
virtual path. Using a flat directory structure allows the JServlet cartridge to load the
classes in the directory into a private name space.

If you use custom packages, you have the following options:

■ Make the package directory different from the physical path directory

■ Make the package directory an immediate subdirectory of the physical path
directory

■ Make the package directory under the physical path directory, but with
intermediate directories between the physical path and the package directory.

Package Directory Different From the Physical Path Directory
For example, your physical path is c:\jservlets\myApp\cart1, and your package
directory is c:\myjava\packages. This enables you to place the package directory
in the application’s CLASSPATH, which means that the cartridge loads the package
Advanced JServlet Programming 4-25

Name Spaces of Java Classes
classes into the system name space. Classes loaded from the physical path directory
are still loaded in the JServlet runner’s name space.

In the following figure, the cartridge loads the hello class from the physical path
and places it in the JServlet runner name space, and loads a package class from the
CLASSPATH and places it in the system name space.

Figure 4–3 Loading classes from a directory different from the physical path

Package Directory in a Subdirectory Directly Under the Physical Path Directory
For example, your physical path is c:\apps\jservlets\myApp\cart1, and your
package directory is c:\apps\jservlets\myApp\cart1\myPackage. In this case, to
make the package classes accessible from your cartridge classes, you have to add
c:\apps\jservlets\myApp\cart1 to the CLASSPATH. This path is the same as the
physical path, and this means that your cartridge classes and your package classes
are loaded into the system name space.

In the following figure, the cartridge loads the hello class and a package class from
the CLASSPATH and places them in the system name space.

Figure 4–4 Loading classes from a directory directly under the physical path

hello

myPackageClass.class

Cartridge
name space

System
name space

Classes loaded

Classes loaded
from CLASSPATH

from physical paths

hello myPackageClass.class
System

Cartridge
name space

name space

Classes loaded

Classes loaded
from CLASSPATH

from physical paths
4-26 Oracle Application Server 4.0 Developer’s Guide: JServlet Applications

Name Spaces of Java Classes
Package Directory Not Directly Under the Physical Path Directory
For example, your physical path is c:\apps\jservlets\myApp\cart1, and your
package directory is
c:\apps\jservlets\myApp\cart1\someDirectory\myPackage. In this case, to
make the package classes accessible from your cartridge classes, you have to add
c:\apps\jservlets\myApp\cart1\someDirectory to the CLASSPATH. This means
that your cartridge classes are still loaded into the cartridge name space, but your
package classes are loaded into the system name space.

In the following figure, the cartridge loads the hello class from the physical path
and places it in the JServlet runner name space, and loads a package class from the
CLASSPATH and places it in the system name space.

Figure 4–5 Loading classes from a directory not directly under the physical path

Adding Classes with Native Libraries
To add classes or packages with native libraries, the native libraries should be put
in one of the directories listed in the LD_LIBRARY_PATH configuration setting of
the application. For example, if you put your native libraries under the
/usr/local/oracle/java/lib directory, your LD_LIBRARY_PATH should contain:

LD_LIBRARY_PATH = ...:/usr/local/oracle/java/lib:...

In the wrb.app file, the setting would look like:

[APPLICATION.<appName>.ENV]
...
LD_LIBRARY_PATH = ...:/usr/local/oracle/java/lib:...

hello

myPackageClass.class

Cartridge
name space

System
name space

Classes loaded

Classes loaded
from CLASSPATH

from physical paths
Advanced JServlet Programming 4-27

Name Spaces of Java Classes
4-28 Oracle Application Server 4.0 Developer’s Guide: JServlet Applications

Invoking Compo
5

Invoking Components

This chapter discusses invoking Oracle Application Server components through the
JServlet applications.

Contents
■ Invoking ECO/Java Objects

■ Invoking Enterprise Java Beans

■ Invoking C++ CORBA Applications

Invoking ECO/Java Objects
Java applications running in a JServlet cartridge environment can invoke
ECO/Java objects. ECO/Java objects are CORBA objects running in Oracle
Application Server processes. See Developer’s Guide: EJB, ECO/Java and CORBA
Applications for more information on how to create ECO/Java objects and add them
to the application server.

CLASSPATH
Before you can compile and run the Java application, add the following paths to the
CLASSPATH of your development environment and to the CLASSPATH of the
runtime environment of the Java application.
nents 5-1

Invoking ECO/Java Objects
Development Environment
In your development environment, set CLASSPATH to contain:

■ $ORAWEB_HOME/classes/ecoapi.jar

Note that you need to develop the ECO/Java application first before you can
develop the JServlet client. This is because the client refers to the classes in the
ECO/Java application.

If the ECO/Java objects throw user-defined exceptions, you have to include the
class files for the exceptions in the development environment, because the client
has to catch these exceptions.

Runtime Environment
In the runtime environment, set CLASSPATH (using the Environment Variables
form for the JServlet application) to contain:

■ %ORAWEB_HOME%/classes/ecoapi.jar

■ %ORACLE_HOME%/ows/apps/eco4j/<ECO/Java_appName>/_client.jar

■ The JAR file for your JServlet application. This JAR file contains the class files
for your Java application and exception class files for exceptions thrown by the
ECO/Java object. See Developer’s Guide: EJB, ECO/Java and CORBA Applications
for details on how to create these files.

For the example below, the Jar file is called Demo.jar, and it contains:

> jar tvf Demo.jar
 599 Thu Jul 01 09:31:24 PDT 1999 META-INF/MANIFEST.MF
 3659 Thu Jul 01 09:31:22 PDT 1999 Demo.class
 0 Thu Jul 01 09:31:22 PDT 1999 myStack/
 259 Thu Jul 01 09:31:22 PDT 1999 myStack/HelloWorldException.class
 419 Thu Jul 01 09:31:22 PDT 1999 myStack/HelloWorldRemote.class
 315 Thu Jul 01 09:31:22 PDT 1999 myStack/HelloWorldHome.class

Entries in the CLASSPATH will be searched in order, so it is important that these
CLASSPATH items be entered in the order given here.
5-2 Oracle Application Server 4.0 Developer’s Guide: JServlet Applications

Invoking ECO/Java Objects
Example
The following example shows a Java application called “Demo” invoking a
ECO/Java object called “HelloWorld”.

Example 5–1 JServlet client for the ECO/Java server application

import myStack.HelloWorldRemote; // class for the ECO/Java object
import mystack.HelloWorldHome;
import oracle.oas.eco.PortableRemoteObject;
import javax.naming.*;
import javax.servlet.*;
import javax.servlet.http.*;

class Demo {
 public void doPost(HttpServletRequest req, HttpServletResponse res)
 throws ServletException, IOException {
 res.setContentType(“text/html; charset=us-ascii”);
 Printwriter out = res.getWriter();
 HelloWorldHome s = null;

 try {
 // Initial Context
 Context _initialContext = new InitialContext();

 // Get an instance of a ECO/Java object named "HelloWorld" in a
 // ECO/Java application named "myStack"
 String _name = "oas:///myStack/HelloWorld";
 s = (HelloWorldHome) PortableRemoteObject.narrow(
 _initialContext.lookup(_name),HelloWorldHome.class);

 // invoke a method called "helloWorld" on the ECO/Java object
 String result = s.helloWorld();
 out.println("Got back: " + result);
 } catch (NamingException ne) {
 System.err.print("Error finding server application");
 } catch (org.omg.CORBA.SystemException se) {
 System.err.print("Communication error.");
 } finally {
 if (s != null)
 s.destroy(); // from ECORemote
 }
 } // doPost
} // Demo
Invoking Components 5-3

Invoking Enterprise Java Beans
Example 5–2 ECO/Java server application

package myStack;
import oracle.oas.eco.*;
import javax.naming.InitialContext;

public class HelloWorld implements SessionBean {
 public String helloWorld() {
 return "Hello World, distributed style!";
 }
}

To run this application in a JServlet cartridge environment, the URL would look
something like:

http://machine:port/test/accessECO/Demo

where machine is a listener running the JServlet cartridge, /test/accessECO is a
virtual path for the JServlet cartridge, and Demo is the Java class that accesses the
ECO/Java object.

Invoking Enterprise Java Beans
Similar to Invoking ECO/Java Objects, Enterprise Java Beans (EJBs) can be invoked
with JServlet applications. The procedure and code are also similar. See Developer’s
Guide: EJB, ECO/Java and CORBA Applications for more information on how to
create Enterprise Java Beans and add them to the application server.

CLASSPATH
Before you can compile and run the Java application, add the following paths to the
CLASSPATH of your development environment and to the CLASSPATH of the
runtime environment of the Java application.

Development Environment
In your development environment, set CLASSPATH to contain:

■ $ORAWEB_HOME/classes/ejbapi.jar

Note that you need to develop the EJB application first before you can develop the
JServlet client. This is because the client refers to the classes in the EJB application.
5-4 Oracle Application Server 4.0 Developer’s Guide: JServlet Applications

Invoking Enterprise Java Beans
If the EJBs throw user-defined exceptions, you have to include the class files for the
exceptions in the development environment, because the client has to catch these
exceptions.

Runtime Environment
In the runtime environment, set CLASSPATH (using the Environment Variables
form for the JServlet application) to contain:

■ %ORAWEB_HOME%/classes/ejbapi.jar

■ %ORACLE_HOME%/ows/apps/ejb/<EJB_appName>/_client.jar

■ The JAR file for your JServlet application. This JAR file contains the class files
for your Java application and exception class files for exceptions thrown by the
ECO/Java object. See Developer’s Guide: EJB, ECO/Java and CORBA Applications
for details on how to create these files.

For the example below, the Jar file is called Demo.jar, and it contains:

> jar tvf Demo.jar
 599 Thu Jul 01 09:31:24 PDT 1999 META-INF/MANIFEST.MF
 3659 Thu Jul 01 09:31:22 PDT 1999 Demo.class
 0 Thu Jul 01 09:31:22 PDT 1999 myStack/
 259 Thu Jul 01 09:31:22 PDT 1999 myStack/HelloWorldException.class
 419 Thu Jul 01 09:31:22 PDT 1999 myStack/HelloWorldRemote.class
 315 Thu Jul 01 09:31:22 PDT 1999 myStack/HelloWorldHome.class

Entries in the CLASSPATH will be searched in order, so it is important that these
CLASSPATH items be entered in the order given here.

Example
The code in Example 5–1, "JServlet client for the ECO/Java server application" and
Example 5–2, "ECO/Java server application" can be easily converted to support
Enterprise Java Beans instead of ECO/Java. The following changes need to be
made:

1. Import the necessary EJB classes for the client.
Replace the import oracle.oas.eco.PortableRemoteObject statement
with:

import javax.rmi.PortableRemoteObject;
Invoking Components 5-5

Invoking C++ CORBA Applications
2. Catch the EJB RemoteException.
Replace the org.omg.CORBA.SystemException exception in the catch block
with java.rmi.RemoteException .

3. Import the necessary classes for the EJB server application.
In the server application in Example 5–2, replace all of the existing import
statements with:

import javax.ejb.*;
import oracle.oas.ejb.*;
import javax.naming.*;

Invoking C++ CORBA Applications
Since C++ cartridges implement business logic, and typically do not specify how
data is presented to clients. You can display data from C++ applications in
browsers by using JServlet applications to format a C++ application’s output.

The HTML page passes to the JServlet cartridge the IOR of the C++ cartridge with
which it is communicating. The JServlet cartridge then invokes methods on the
specified cartridge instance. (Figure 5–1 represents this graphically.) To store the
IOR, the HTML page can store stringified IORs in hidden fields or it can use
cookies.

Figure 5–1 HTML to JServlet cartridge to C++ cartridge

HTML

JServlet

C++

cartridge

cartridge
“IOR_1”

HTML
“IOR_2”

HTML
“IOR_3”

JServlet
cartridge

IOR_1

C++
cartridge

C++
cartridge

IOR_2

IOR_3
5-6 Oracle Application Server 4.0 Developer’s Guide: JServlet Applications

Invoking C++ CORBA Applications
The request lifecycle for this task is:

1. A client sends the first request to the JServlet cartridge, which makes JNDI calls
to get an object reference to a C++ cartridge.

2. The JServlet cartridge stringifies the IOR of the C++ cartridge, and returns an
HTML page that includes the IOR value in a hidden field.

3. The user enters some data and submits the form. Note that the form should be
submitted using the POST method (instead of GET) because of the long length
of the stringified IOR.

4. The JServlet cartridge receives the form, which includes the stringified IOR,
and invokes methods on the C++ cartridge referenced by the IOR.

5. Methods in the C++ cartridge return values to the JServlet cartridge, which
assembles an HTML page using the values and returns it to the user. The
JServlet cartridge can include the IOR on the HTML page if the user still needs
to communicate with the C++ cartridge.

6. When no further communication is expected, the JServlet cartridge destroys the
C++ cartridge.

You should set the timeout values for the C++ cartridges to conservative values
because users can change their minds and not get to the point where the JServlet
cartridge destroys the C++ cartridge. The timeout value ensures that Oracle
Application Server cleans up idle, but occupied, C++ cartridges.
Invoking Components 5-7

Invoking C++ CORBA Applications
5-8 Oracle Application Server 4.0 Developer’s Guide: JServlet Applications

Database A
6

Database Access

JServlet applications can access databases in different ways:

■ To invoke PL/SQL procedures and functions from Java applications running in
the context of a JServlet cartridge, you can use the pl2java utility to generate
Java wrapper classes for procedures in PL/SQL packages. You can then call the
wrapper classes to invoke the PL/SQL procedures. This allows you to
implement database logic in PL/SQL to ensure proper control of data in your
databases and to invoke existing PL/SQL code from Java applications. See
Chapter 7, "pl2java" for information on how to run the utility.

■ To invoke SQL statements directly or access non-Oracle databases, you can use
the JDBC package or JdbcBeans.

JDBC provides a standard interface to access databases from different vendors.
See "JDBC Example" on how to use JDBC with JServlet cartridges. For complete
documentation on JDBC, see your vendor’s documentation.

Contents
■ Using JDBC Drivers

■ JDBC Example

■ Using the Transaction Service

Using JDBC Drivers
The JServlet cartridge ships with jts805jdbc.jar and oraclejts.jar as the default
JDBC and JTS libraries. The default behavior is for these drivers to be set in the
CLASSPATH for any JServlet application. If JServlet detects the Oracle Application
ccess 6-1

Using JDBC Drivers
Server runtime is an Enterprise Edition and transactions are enabled, the JServlet
environment will bootstrap JTS. After that, any JServlet cartridge class can use JTS.

If you don't want to use JTS, you can remove these two jar files from the
CLASSPATH and replace them with the regular Oracle JDBC jar file. In this case,
you can use either the thin or thick JDBC driver. You also need to disable
transactions using the OAS Manager.

By disabling transactions using the OAS Manager, you disable distributed
transactions. Regular transactions supported by the JDBC drivers are still available.

Opening and Closing Connections
To improve performance it is best to open a database connection in a servlet’s
init() method and close the connection in the destroy() method. This can only
be done if both:

■ the servlet implements the SingleThreadModel interface

■ an OCI driver is used.

If either condition is not met, the database connection must be opened and closed
within the same method.

Error Handling
If the database connection is lost while a servlet instance is still alive, attempting to
use the connection will raise the SQLException exception. If the connection is not
re-established, all requests sent to this servlet instance will fail. Additional error
checking should be added to check for connection failure and perform appropriate
exception handling. This will make your applications more robust.

Using Multibyte Character Sets
If you want to use the JDBC OCI8 Driver to handle multibyte characters from a
database, the character set must be set to UTF8 in the Java Environment form. For
example, to use the Japanese character set, define the NLS_LANG parameter as
NLS_LANG=JAPANESE_JAPAN.UTF8.
6-2 Oracle Application Server 4.0 Developer’s Guide: JServlet Applications

JDBC Example
JDBC Example
The JServlet cartridge has been tested with Oracle’s JDBC OCI7 and OCI8 driver to
connect to Oracle databases. For details on the driver, see the JDBC documentation.

Note that you have to include the following paths to LD_LIBRARY_PATH and
CLASSPATH in order to compile and run the Java application.

■ LD_LIBRARY_PATH: include %ORACLE_HOME%/jdbc/lib. %ORACLE_
HOME%/jdbc is the JDBC root directory.

■ CLASSPATH: include %ORACLE_HOME%/jdbc/lib/classes111.zip.

You add these paths to the application using the Environment Variables form in the
Oracle Application Server Manager.

Example 6–1 Using the JServlet toolkit with JDBC

// You need to import the java.sql package to use JDBC
import java.sql.*;
import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
import oracle.html.*; // import Oracle HTML classes which deal with HTML

public class JDBC_EmployeeReport extends HttpServlet
 implements SingleThreadModel {
 private Connection conn = null;

 public void init (ServletConfig config) throws ServletException {
 super.init(config);
 try {
 // Load the Oracle JDBC driver
 Class.forName (“oracle.jdbc.driver.OracleDriver”);

 // Connect to the database. To connect to a remote database,
 // insert the connect string after the @ sign in the connection URL.
 Connection conn = DriverManager.getConnection(“jdbc:oracle:oci8:@”,
 “www_user”,”manager”);
 } catch (SQLException e) {
 System.err.println(“Could not establish connection.”);
 } catch (ClassNotFoundException e) {
 System.err.println(“Could not load database driver.”);
 }
 } // init
Database Access 6-3

JDBC Example
 public void doPost (HttpServletRequest req,
 HttpServletResponse res)
 throws ServletException, IOException {
 try {
 // Create a Statement
 Statement stmt = conn.createStatement ();

 // Select the ENAME column from the EMP table
 ResultSet rset = stmt.executeQuery(“select ename, empno, deptno from EMP”);

 // create an HTML page to return to the client browser
 HtmlHead hd = new HtmlHead(“Employee Listing”);
 HtmlBody bd = new HtmlBody();
 HtmlPage hp = new HtmlPage(hd, bd);

 // generate report
 DynamicTable tab = new DynamicTable(2);
 TableRow row = new TableRow();
 row.addCell(new TableHeaderCell(“Employee Name”))
 .addCell(new TableHeaderCell(“Employee Number”))
 .addCell(new TableHeaderCell(“Employee Dept”));
 tab.addRow(row);
 // Iterate through the result and print the employee names
 while (rset.next ()) {
 row = new TableRow();
 if (rset.getInt(2)==0) {
 row.addCell(new TableDataCell(rset.getString(1)))
 .addCell(new TableDataCell(“new employee”))
 .addCell(new TableDataCell(rset.getString(3)));
 } else {
 row.addCell(new TableDataCell(rset.getString(1)))
 .addCell(new TableDataCell(String.valueOf(rset.getInt(2))))
 .addCell(new TableDataCell(rset.getString(3)));
 } // if
 tab.addRow(row);
 } // while
 hp.addItem(tab);
 hp.printHeader();
 hp.print();
 } catch (SQLException e) {
 System.err.println(“A database error occurred.”);
 }
 } // doPost
6-4 Oracle Application Server 4.0 Developer’s Guide: JServlet Applications

Using the Transaction Service
 public void destroy () {
 try {
 // close the database connection
 if (conn != null) conn.close();
 } catch (SQLException e) {
 System.err.println(“Error closing database connection.”);
 }
 } // destroy

} // class

Using the Transaction Service

You can use Oracle Application Server’s transaction service with the JServlet
cartridge. The transaction service works with different database access APIs to
coordinate distributed transactions. In the case of the JServlet cartridge, the
database access APIs are JDBC (Java Database Connectivity) and pl2java-generated
classes. You use the database access APIs to perform database operations such as
connecting to the database, executing statements on the database, and
disconnecting from the database. You do not use the database access APIs to
demarcate transactions; instead, you use the transaction service APIs.

The transaction service enables you to perform transactions that span requests,
resource managers, and cartridges. See the “Enabling Transactions,” chapter in the
Administrator’s Guide for information on transactions and on configuring
transactions.

The transaction service is based on JTS (Java Transaction Service). You can get more
information about this service from the JavaSoft site
(http://java.sun.com/products/jts).

When the JServlet cartridge starts up, it calls initTS() to initialize the service.
You should not call initTS() . When it shuts down, it calls termTS() to clean up
the service.

Note: This feature is available in the Enterprise Edition of Oracle
Application Server only.
Database Access 6-5

Using the Transaction Service
Transaction Service with JDBC
To use the transaction service with JDBC in the JServlet cartridge:

1. Connect to a resource manager using TransactionService.connectRM() .
The method takes one parameter specifying the name of a transactional DAD.
The connectRM() method is part of the oracle.jts.util.TransactionService class.
You may retrieve the TransactionService object through the static method,
TS::getTS.

2. Get an org.omg.CosTransactions.Current object using
TransactionService.getCurrent() . The Current object provides the
begin() , commit() , and rollback() methods to demarcate transactions.

3. Begin a transaction through the begin() method.

4. Connect to the database using DriverManager.getConnection() .

5. Perform database operations.

6. Commit or roll back the transaction through either the commit() or
rollback() methods.

7. Disconnect from the resource manager using disconnectRM() .

Example 6–2 Transaction service with JDBC

// A JTS/JDBC test program; single process single-threaded test.
// It will require you to have a database, orb, and otsfacsrv running.

import java.sql.*;
import java.math.*;
import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

// Allows us to refer to the TS class without oracle.jts.
import oracle.jts.util.*;
// Allows us to refer to Current and Status without prefix.
import org.omg.CosTransactions.*;

// A basic test program which exercises JTS.
// This program is not meant to actually do anything useful,
// except exercise the basic functionality of JTS.
public class testjts {
 // Note: The name of the transactional DAD is hard-coded here. The variable
 // TheTestRM is set to the DAD name "testrm1". You need a transactional
6-6 Oracle Application Server 4.0 Developer’s Guide: JServlet Applications

Using the Transaction Service
 // name of the same name, or you will need to modify the DAD name here.
 String TheTestRM = "testrm1"; // the name of a transactional DAD
 String TheTestDB = "otsinst1";

 // This method must contain all JTS actions for this thread.
 // This method is called within the Transactional.run() method.
 public void TheTest() {
 try {
 (TS.getTS()).connectRM(TheTestRM);
 } catch (Exception e) {
 System.err.println("testjts: Connect failed: message="+e.getMessage());
 return;
 }

 // Get a Current object
 Current mycurrent = (TS.getTS()).getCurrent();

 // Now exercise the Current object
 // Begin() starts a transaction
 ResultSet rset,r2set;
 Statement stmt;
 Connection conn = null;

 try {
mycurrent.begin();

 mycurrent.set_timeout(10);
 Status ourstat = mycurrent.get_status();

 String traname = mycurrent.get_transaction_name();
 System.err.println("testjts: Transaction_name="+traname);

 try {
 // Do actual JDBC here
 DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());
 System.err.println("testjts: after registerDriver");

 // Load the JTS enabled JDBC driver; login to db
 conn = DriverManager.getConnection ("jdbc:oracle:jts7:@"+TheTestRM,
 "tkxabrch", "tiger");
 System.err.println("testjts: after getConnection");
 stmt = conn.createStatement();
 System.err.println("testjts: after createStatement");
 try {
 conn.setAutoCommit(true);
 } catch (Exception e) {
Database Access 6-7

Using the Transaction Service
 System.err.println("testjts: Correct error: setAutoCommit failed:"
 +e.getMessage());
 }

 System.err.println("testjts: Before: names in the database:");
 r2set = stmt.executeQuery("select ename from emp");
 while(r2set.next()) {
 System.err.println("testjts: Name="+r2set.getString(1));
 }

 System.err.println("testjts: Doing insert.");
 int numrows = stmt.executeUpdate(
 "insert into emp(empno,ename,sal) VALUES (2003,'JunIsKing',912)");

 System.err.println("testjts: Doing insert.");
 numrows = stmt.executeUpdate(
 "insert into emp(empno,ename,sal) VALUES (2004,'Ziggy',912)");

 System.err.println("testjts: after inserts: names in the database:");
 r2set = stmt.executeQuery("select ename from emp");
 while(r2set.next()) {
 System.err.println("testjts: Name="+r2set.getString(1));
 }

 System.err.println("testjts: Doing delete.");
 numrows=stmt.executeUpdate("delete from emp where ename='JunIsKing'");

 System.err.println("testjts: Names before commit.");
 r2set = stmt.executeQuery("select ename from emp");
 while(r2set.next()) {
 System.err.println("testjts: Name="+r2set.getString(1));
 }

 System.err.println("testjts: Trying a commit!");
mycurrent.commit(false);

 try {
 System.err.println("testjts: names in database afterwards.");
 r2set = stmt.executeQuery("select ename from emp");
 while(r2set.next()) {
 System.err.println("testjts: Name="+r2set.getString(1));
 }
 } catch (Exception e) {
 System.err.println("testjts: Correct exception: tran-less sql: "
 +e.getMessage());
6-8 Oracle Application Server 4.0 Developer’s Guide: JServlet Applications

Using the Transaction Service
 }

 } catch (SQLException esqlerr) {
 System.err.println("testjts: SQL Exception:"+esqlerr.getMessage());
 } catch (Exception except) {
 System.err.println("testjts: General Exception: "+except.getMessage());
 }

 try {
 System.err.println("testjts: Verifying get_transaction_name complains
 if no transaction.");
 String traname2 = mycurrent.get_transaction_name();
 System.err.println("testjts: You should never see me!");
 } catch (Exception e) {
 System.err.println("testjts: Correct exception: couldn't get
 transaction name");
 }

 } catch(Exception e) {
 System.err.println("testjts: Begin/Rollback exception: "+e.getMessage());
 }

 // Close the JDBC connection and the JTS connection
 try {
 if (conn != null) conn.close();

 (TS.getTS()).disconnectRM(TheTestRM);
 } catch (Exception e) {
 System.err.println("testjts: Disconnect failed: "+e.getMessage());
 return;
 }

 // finish!
 System.err.println(“testjts: We are done!”);
 } // TheTest

 // Lets that object run.
 public void dothis() {
 int didwhat = 0;

 try {
 didwhat = 1;

 // And let it run!
 TheTest();
Database Access 6-9

Using the Transaction Service
 didwhat = 0;
 } catch (Exception e) {
 System.err.print("testjts: Caught exception! dowhat="+didwhat);
 System.err.println(" Message= " + e.getMessage());
 } // dothis

 // This test's entry point.
 // Creates a real object and lets it take over.
 public void doPost(HttpServletRequest req,
 HttpServletResponse res)
 throws ServletException, IOException {
 testjts athing = new testjts();
 athing.dothis();
 } // doPost
} // class
6-10 Oracle Application Server 4.0 Developer’s Guide: JServlet Applications

p

7

pl2java

This chapter describes how to use the pl2java utility to access databases. The
pl2java utility generates Java wrapper classes for PL/SQL procedures and
functions in PL/SQL packages.

You can then call the wrapper classes from your Java applications to invoke the
PL/SQL subprograms. This allows you to implement database logic in PL/SQL to
ensure proper control of data in your databases and to invoke existing PL/SQL
code from Java applications.

Contents
■ Overview of pl2java

■ Requirements

■ Running pl2java

■ PL/SQL Data Type Mapping in Java

■ Connecting to the Database

■ Invoking PL/SQL Stored Procedures

■ Handling Database Errors

■ Setting the Character Set Value

■ Freeing Database Sessions

■ Using the Transaction Service with pl2java
l2java 7-1

Overview of pl2java
Overview of pl2java
To enable Java applications to invoke PL/SQL procedures and functions, you can
use pl2java, a utility that generates Java wrapper classes for PL/SQL stored
procedures. A Java wrapper class is a class containing methods to call a PL/SQL
package’s procedures and functions, and serves as an interface between the two
languages. Stand-alone PL/SQL procedures and functions are all wrapped in a
single wrapper class.

The Java wrapper classes generated by pl2java provide a convenient way to invoke
PL/SQL stored procedures. For each PL/SQL package you specify, pl2java
generates a Java wrapper class, which contains a wrapper method for each
procedure or function in the PL/SQL package. The prototype of the wrapper
method is the same as the PL/SQL procedure or function it wraps. This provides
an “object” view of PL/SQL packages and allows PL/SQL stored procedures to be
called seamlessly.

pl2java can be found in the $ORACLE_HOME/ows/cartx/jweb/bin directory.

Requirements
To use pl2java, you must have:

■ installed the packages in the database that you want to invoke from Java

■ installed the Java Development Kit (JDK) version 1.1.6

■ placed the Java interpreter executable in your execution path

■ installed the dbms_package PL/SQL package in the database where your
PL/SQL packages are loaded. This package must be installed by the SYS
database user.

For Oracle7, the installation script is
$ORACLE_HOME/ows/cartx/jweb/sql/dbpkins.sql. The de-installation script
is dbpkdins.sql.

For Oracle8, use dbpkins8.sql instead of dbpkins.sql. If you use the wrong
installation script, you will get the following error message:

Warning: Package Body created with compilation errors

If any errors occur during the installation procedure, the dbpkdins.sql script
should be run to undo any changes made.
7-2 Oracle Application Server 4.0 Developer’s Guide: JServlet Applications

Running pl2java
Running pl2java
To generate the Java wrapper class for your PL/SQL package, invoke pl2java from
the command prompt:

prompt> pl2java [-help] [-d dir] [-package pkg] [-class class] [-nolog]
username / password [@connect-string] plsql_package ...

pl2java creates a Java wrapper class for each PL/SQL package given as an
argument to the command. When your application is run, an instance of this class
to interface to the package is created.

If you have stand-alone procedures or functions in your applications, run pl2java
with the class flag. This creates a single wrapper class for all the stand-alone
procedures and functions you use.

The following table lists the arguments of pl2java:

Table 7–1 Arguments for pl2java

Argument Description

-help Provides help information

-d dir The directory where the wrapper classes will be stored; the
default is the current directory.

-package pkg The Java package to which the wrapper classes belong.

-class class The Java class to which the wrappers belong.

If the pl2java utility is run against packages, this flag is optional.
Java classes based on packages inherit by default the names of
the packages they encapsulate. This flag can override the default,
but it only applies to the first package named in the command.

If the wrappers are being created for stand-alone procedures and
functions, then this flag is mandatory, and all procedures and
functions named in the command are grouped into the single
class named by this flag.

-nolog If this option is specified, the log messages (such as “Connecting
to database” and “Username is user”) produced by the generated
classes are not logged.

If this option is not specified (the default), the log messages are
written to the log device (such as a file or database), if logging is
enabled for the application using the generated classes.

username The name of the Oracle database user that owns the PL/SQL
packages

password The password for the Oracle user identified by username
pl2java 7-3

PL/SQL Data Type Mapping in Java
The names of the classes follow the capitalization given in the command. However,
since PL/SQL is not case-sensitive, this capitalization does not need to follow the
capitalization in the PL/SQL code itself.

PL/SQL Data Type Mapping in Java
To pass data between Java and PL/SQL, pl2java maps the PL/SQL data types to
Java wrapper classes. Primitive types in Java cannot represent PL/SQL types
because PL/SQL types can have null values, which are not allowed in Java. So to
represent PL/SQL types without losing the null value, pl2java maps PL/SQL types
to Java wrapper classes.

These wrapper classes belong to the oracle.plsql package and are derived from
the PValue base class, which encapsulates the null attribute of PL/SQL values.
Each individually derived wrapper class represents one or more related PL/SQL
data types. The following table lists the Java wrapper classes for PL/SQL data
types:

connect-string The string that identifies the database where the packages are
located. This is the SQL*Net Connect String, as described in
Understanding SQL*Net. For local databases, omit this
connect-string. Instead, set the ORACLE_SID environment
variable to specify the local databases.

plsql_package... A list of all the PL/SQL packages that your Java application
references in the schema identified by username. To wrap
stand-alone procedures and functions, omit this argument and
instead use the -class flag to name the class wrapper that will
be created. You should not include the containing schemas in the
package names. It is good practice to keep all the packages,
procedures, and functions you want to use in one schema.

Table 7–2 Wrapper classes for PL/SQL data types

PL/SQL data type Java wrapper class

BINARY_INTEGER (NATURAL) PInteger

NUMBER (DEC, DECIMAL, DOUBLE PRECISION,
FLOAT, INTEGER, INT, NUMERIC, REAL, SMALLINT)

PDouble

CHAR(n) (CHARACTER, STRING) PStringBuffer

Table 7–1 Arguments for pl2java

Argument Description
7-4 Oracle Application Server 4.0 Developer’s Guide: JServlet Applications

PL/SQL Data Type Mapping in Java
When you pass a value to a PL/SQL call, you create a wrapper object for that
PL/SQL data type and store the value in it. If the call returns with an output
parameter, you retrieve the value from the wrapper object.

There are certain PL/SQL data types that pl2java cannot encapsulate. These are
shown below, along with the recommended substitutes, if any:

Records and cursors are not supported.

VARCHAR2(n) (VARCHAR) PStringBuffer

LONG PStringBuffer

RAW (n), LONG RAW PByteArray

LONG RAW PByteArray

BOOLEAN PBoolean

DATE PDate

PL/SQL table Java array

Table 7–3 Unsupported PL/SQL data types

Disallowed PL/SQL data type Substitute PL/SQL data type

POSITIVE BINARY INTEGER

CLOB, BLOB, BFILE none

PL/SQL table of BINARY INTEGER,
NATURAL or POSITIVE

PL/SQL table of NUMBER

PL/SQL table of LONG PL/SQL table of CHAR or VARCHAR2

PL/SQL table of BOOLEAN PL/SQL table of NUMBER, treat 0 as false, 1
as true

ROWID none

MSLABEL none

PL/SQL table of ROWID none

PL/SQL table of MSLABEL none

Table 7–2 Wrapper classes for PL/SQL data types

PL/SQL data type Java wrapper class
pl2java 7-5

PL/SQL Data Type Mapping in Java
Example
Consider the following Employee PL/SQL package that contains a function and a
procedure:

Example 7–1 Employee PL/SQL package

package Employee as
 type string_table is table of varchar2(30) index by binary_integer;
 type number_table is table of number(10) index by binary_integer;
 function count_employees(dept_name in varchar2) return number;
 procedure list_employees(
 dept_name in varchar2,
 employee_name out string_table,
 employee_no out number_table
);
end;

Run pl2java to generate the wrapper class:

prompt> pl2java scott/tiger@db Employee

pl2java generates the Employee wrapper class, which contains the following:

public class Employee {
 public Employee(Session dbSession) { ... }
 public PDouble count_employees(PStringBuffer dept_name) { ... }
 public void list_employees(
 PStringBuffer dept_name,
 PStringBuffer employee_name[],
 PDouble employee_no[]
) { ... }
}

When a PL/SQL function returns a value whose size is variable (for example
VARCHAR2, LONG, RAW, or LONG RAW), the size of the value is set by default
to 255 bytes. In the wrapper class, you may change the default size by setting the
following data member of the wrapper class for the PL/SQL function in question:

<function name>_<overload number>_return_length

The overload number is the number of other functions that exist with the same
name. You can find the overload number of a function by using the Oracle Server
standard package DBMS_DESCRIBE. For non-overloaded functions, the overload
number is 0.
7-6 Oracle Application Server 4.0 Developer’s Guide: JServlet Applications

Connecting to the Database
For example, assume the following PL/SQL package:

package Employee as
 function employee_name (
 employee_number in number
) return varchar2;
end;

The wrapper class Employee contains the data member
employee_name_0_return_length which can be overridden:

public class Employee {
 ...
 public PStringBuffer employee_name(PDouble employee_number);
 public int employee_name_0_return_length = 255;
}

Similarly, if the function returns a PL/SQL table, you can specify the length of the
array with the data member of the wrapper class:

<function name>_<overload number>_return_arraylength

Connecting to the Database
The database connection is encapsulated by the Session class in the
oracle.rdbms package. The Session class provides methods to perform
common database tasks, such as logon, logoff, commit, rollback, and so on. Before
you connect to an Oracle database, you need to define environment properties,
such as the ORACLE_HOME environment variable. To do this, retrieve
ORACLE_HOME of the application server in the cartridge’s system properties
“oracleHome ” with the System.getProperty method. After defining Oracle
environment properties, instantiate a Session object and log on to the database. The
following sample code illustrates how this is done:

Example 7–2 Connecting to a database

// Define ORACLE_HOME
Session.setProperty("ORACLE_HOME", System.getProperty("oracleHome"));

// Create a new database session and logon
Session session = new Session();
session.logon("scott", "tiger", "sales_db");
pl2java 7-7

Invoking PL/SQL Stored Procedures
Invoking PL/SQL Stored Procedures
To invoke a PL/SQL stored procedure, you instantiate the wrapper class for the
PL/SQL package (or for anonymous/stand-alone PL/SQL procedures) with a
Session object. This prepares the object for the execution of the PL/SQL package in
the session. If you want to invoke the PL/SQL package in multiple database
sessions, you need to instantiate the wrapper class for each one of them. For
example, to instantiate an Employee object:

// Instantiate Employee wrapper class:
Employee emp = new Employee(session);

When you invoke a PL/SQL procedure that takes parameters, you need to pass the
values to the parameters by storing them in PL/SQL data type wrapper objects.
Instantiate these wrapper objects and set the values with the setValue method
and pass these objects to the wrapper method as parameters. To pass a PL/SQL
null value, use setNull method on the wrapper object to set the value to null.

When a PL/SQL function returns, it may return some values in its out parameters
or return value. To retrieve the return values, use the get-value methods of the
wrapper classes. For example, use the intValue method of the PInteger class to
retrieve an int value. Note that when a PL/SQL return value is null, the get-value
method throws a NullValueException . This NullValueException signifies a
null value, and you should handle this exception properly with a try-catch block.
Alternatively, you can first use the isNull method to determine if the value is
null, and invoke the get-value method when it is not null.

Example 7–3 Passing PL/SQL parameters in and out

// Instantiate a PStringBuffer to pass a string to the PL/SQL procedure
PStringBuffer pDeptName = new PStringBuffer(30);
pDeptName.setValue("Sales");

// Invoke the PL/SQL procedure
PDouble pEmployeeCount = employee.count_employees(pDeptName);

// Retrieve the return value
if (!pEmployeeCount.isNull())
 int employeeCount = pEmployeeCount.intValue();

When a PL/SQL parameter is a PL/SQL table, either an in or an out parameter,
you need to create the Java array as well as the elements in the array. This is
illustrated in Example 7–4.
7-8 Oracle Application Server 4.0 Developer’s Guide: JServlet Applications

Setting the Character Set Value
Example 7–4 Passing a PL/SQL table in and out

// Create a PL/SQL table parameter
PStringBuffer pEmployeeNames[] = new PStringBuffer[30];
for(int = 0; i < pEmployeeNames.length; i++)
 pEmployeeNames[i] = new PStringBuffer(80);

// Invoke a PL/SQL procedure
employee.list_employees(pEmployeeNames);

All wrapper classes that encapsulate PL/SQL values have a toString method
and therefore can be concatenated with Java Strings. For example, you can use the
pEmployeeCount object from above directly in a string concatenation:

// Display the employee count
System.out.print("There are " + pEmployeeCount + " employees.");

Handling Database Errors
pl2java and the JServlet cartridge provide tight integration between Java and
PL/SQL in the way database exceptions are handled. When an error occurs during
a database operation, an exception is thrown. The exception is returned to Java and
is thrown as a ServerException . For example, when a no-data-found exception
occurs in a SQL select statement, a ServerException is thrown. You can use
the getSqlcode and getSqlerrm methods to retrieve the SQL code and error
message of the exception.

Most methods of the Session class as well as the wrapper methods in PL/SQL
wrapper classes throws ServerException . You should catch the exception by
putting the calls in a try-catch block.

Setting the Character Set Value
The character set that an application uses when communicating with a database is
specified by the NLS_LANG variable set in the Environment Variables form in the
Oracle Application Server Manager. The value of the variable is used by all
cartridges in the application. To use more than one NLS_LANG value, you need to
create separate applications.

If the NLS_LANG value is not specified for an application, it defaults to
AMERICAN_AMERICA.US7ASCII. See the Oracle Server documentation for the
format of NLS_LANG.
pl2java 7-9

Freeing Database Sessions
Freeing Database Sessions
Java provides a garbage collector which frees up objects when they are no longer
needed. When a database session is no longer needed and becomes garbage, the
session will be disconnected before it is garbage-collected. However, the garbage
collector does not guarantee that any garbage objects will be collected immediately.
In fact, Java’s garbage collector waits until the program is idle, or until resources
are low, before it collects garbage objects. Therefore, you should try to log off from
the database when the session is no longer needed to free up database resources
explicitly.

Using the Transaction Service with pl2java

You can use Oracle Application Server’s transaction service with the
pl2java-generated classes. The transaction service enables you to perform
transactions that span requests, resource managers, and cartridges. See the
Administration Guide for details.

The transaction service is based on JTS (Java Transaction Service). You can get more
information about this service from the JavaSoft site (http://www.javasoft.com).

When the JServlet cartridge starts up, it calls initTS() to initialize the service.
You should not call initTS() . When it shuts down, it calls termTS() to clean up
the service.

This section contains the following subsections.

■ Configuration

■ Transaction Service with pl2java-generated Classes

Note: You should not change NLS_LANG programmatically
because the value must be defined before the cartridge server starts
up. If you use the Session.setProperty() method to set
NLS_LANG, the first request to the cartridge will fail due to NLS
bootstrapping limitations and may produce undesired behavior.

Note: This feature is available in the Enterprise Edition of Oracle
Application Server only.
7-10 Oracle Application Server 4.0 Developer’s Guide: JServlet Applications

Using the Transaction Service with pl2java
Configuration
To use the transaction service for a JServlet application, check that you have done
the following:

■ Enabled the transaction service for the application. You do this using the
Transaction Property form.

■ Specified transactional DADs in the Transaction Property form. You use the
DAD Transactions form to choose a transactional DAD.

Transaction Service with pl2java-generated Classes
To use the transaction service with pl2java-generated classes in the JServlet
cartridge:

1. Connect to a resource manager using connectRM() . The method takes one
parameter specifying the name of a transactional DAD.

2. Register a transactional DAD with pl2java classes using Session.

3. Get a Current object using getCurrent() . The Current object provides the
begin() , commit() , and rollback() methods to demarcate transactions.

4. Begin a transaction.

5. Perform database operations.

6. Commit or roll back the transaction.

7. Disconnect from the resource manager using disconnectRM() .

Example 7–5 Transaction service with pl2java generated classes

import javax.servlet.*;
import javax.servlet.http.*;
import oracle.rdbms.*; // import Oracle classes that deal with database session
import oracle.plsql.*; // import Oracle classes that deal with PL/SQL data types
import oracle.html.*; // import Oracle HTML classes that deal with HTML
import oracle.jts.util.*;
import org.omg.CosTransactions.*;

public class TXNEmployeeReport {
 public void doPost(HttpServletRequest req,
 HttpServletResponse res)
 throws ServletException, IOException {

 HtmlHead hd = new HtmlHead("Employee Listing");
pl2java 7-11

Using the Transaction Service with pl2java
 HtmlBody bd = new HtmlBody();
 HtmlPage hp = new HtmlPage(hd, bd);
 hp.printHeader();

 // define Oracle session properties link ORACLE_HOME
 Session.setProperty("ORACLE_HOME", System.getProperty("oracleHome"));

 Session session;
 TXNEmployee employee;
 String deptName;

 // STEP 1. Connect to a resource manager
 try {

(TS.getTS()).connectRM("TXN"); // TXN is a transactional DAD
 } catch (Exception e) {
 System.out.println("testpl2javatx: Connect failed: message="

 + e.getMessage());
return;

}

 // STEP 2. Register the connection with PLSQL classes
 try {

session = new Session("TXN");
 // create a new instance of TXNEmployee package
 employee = new TXNEmployee(session);

 // find the department name from the input parameter
 deptName = getArgument(args, "DEPT");
 } catch (ServerException e) {
 bd.addItem(new SimpleItem("PLSQL Instance creation failed : "
 + e.getSqlerrm()));
 hp.print();
 return;
 }

 try { // STEP 3. Get a current object.
Current mycurrent = (TS.getTS()).getCurrent();
mycurrent.begin();

 // STEP 4. Begin a transaction.
 generateReport(employee, deptName, bd, hp, "before adding new Employee");

 PStringBuffer psbadd = new PStringBuffer(30, "Hello");
 PStringBuffer pDeptName = new PStringBuffer(30, deptName);
 PDouble pdadd = new PDouble(1010);
7-12 Oracle Application Server 4.0 Developer’s Guide: JServlet Applications

Using the Transaction Service with pl2java
 // STEP 5. Perform database operations.
 employee.add_employee(psbadd, pdadd, pDeptName);

 // STEP 6. Commit the transactions.
mycurrent.commit(true);

 } catch (Exception e) {
 e.printStackTrace(System.out);
 }

 try { // begin another transaction
Current mycurrent = (TS.getTS()).getCurrent();
mycurrent.begin();

 generateReport(employee, deptName, bd, hp, "after adding a new Employee");
 PStringBuffer psbdelete = new PStringBuffer(30, "Thomas Bird");
 employee.delete_employee(psbdelete);
 generateReport(employee, deptName, bd, hp, "after deleting an Employee");

mycurrent.rollback(); // roll back the transaction
 } catch (Exception e) {
 e.printStackTrace(System.out);
 }

 try {
 Current mycurrent = (TS.getTS()).getCurrent();

mycurrent.begin();

 generateReport (employee, deptName, bd, hp, "after rollback on deletion");
 PStringBuffer psbdelete = new PStringBuffer(30, "Thomas Bird");
 employee.delete_employee(psbdelete);
 generateReport (employee, deptName, bd, hp, "after deleting an Employee");

mycurrent.commit(true);
 } catch (Exception e) {
 e.printStackTrace(System.out);
 }

 try {
 Current mycurrent = (TS.getTS()).getCurrent();

mycurrent.begin();

 generateReport (employee, deptName, bd, hp, "after commit on deletion");
mycurrent.commit(false);

 } catch (Exception e) {
 e.printStackTrace(System.out);
pl2java 7-13

Using the Transaction Service with pl2java
 }

 // Deregister from PLSQL classes
 try {

session.logoff();
 } catch (ServerException e) {
 }

 // STEP 7. Disconnect from the resource manager.
 try {

(TS.getTS()).disconnectRM("TXN");
 } catch (Exception e) {
 System.out.println("testpl2javatx: Disconnect failed: " + e.getMessage());
 return;
 }
 hp.print();
} // doPost

// Look up a URL parameter
private static String getArgument(String args[], String name) {
 String prefix = name + "=";
 for(int i = 0; i < args.length; i++)
 if (args[i].startsWith(prefix))
 return args[i].substring(prefix.length());
 return null;
} // getArgument

private static void generateReport(TXNEmployee employee, String deptName,
 HtmlBody bd, HtmlPage hp, String label)
 throws HtmlException {
 if ((deptName == null) || (deptName.length() == 0)) {
 bd.addItem(new SimpleItem("No department name given"));
 return;
 }

 // create objects to encapsulate PL/SQL values that are
 // used as parameters
 PStringBuffer pDeptName = new PStringBuffer(30, deptName);
 PStringBuffer pEmployeeName[];
 PDouble pEmployeeNumber[];
 PDouble pEmployeeCount;

 // print report header
7-14 Oracle Application Server 4.0 Developer’s Guide: JServlet Applications

Using the Transaction Service with pl2java
 bd.addItem(SimpleItem.Paragraph)
 .addItem("Employees from Department " + pDeptName + " " + label)
 .addItem(SimpleItem.Paragraph);

 // call TXNEmployee package to count the number of employees in
 // the department
 try {
 pEmployeeCount = employee.count_employees(pDeptName);
 } catch (ServerException e) {
 bd.addItem("Fail to retrieve employee information for department "
 + deptName + ": " + e.getSqlerrm());
 return;
 }

 int employeeCount = (int)pEmployeeCount.doubleValue();
 if (employeeCount == 0) {
 bd.addItem("No employee found under department " + deptName);
 return;
 }

 // allocate the arrays for employee names and numbers
 pEmployeeName = new PStringBuffer[employeeCount];
 pEmployeeNumber = new PDouble[employeeCount];

 // allocate the buffers to retrieve employee information
 for(int i = 0; i < employeeCount; i++) {
 // max length of employee name is 30 (characters)
 pEmployeeName[i] = new PStringBuffer(30);
 pEmployeeNumber[i] = new PDouble();
 }

 // call TXNEmployee package to look up employees in the dept
 try {
 employee.list_employees(pDeptName, pEmployeeName, pEmployeeNumber);
 } catch (ServerException e) {
 bd.addItem("Fail to retrieve employee information for department "
 + deptName + ": " + e.getSqlerrm());
 return;
 }

 // generate report
 DynamicTable tab = new DynamicTable(2);
 TableRow row = new TableRow();
 row.addCell(new TableHeaderCell("Employee Name"))
 .addCell(new TableHeaderCell("Employee Number"));
pl2java 7-15

Using the Transaction Service with pl2java
 tab.addRow(row);

 for (int i = 0; i < employeeCount; i++) {
 row = new TableRow();
 if (pEmployeeNumber[i].isNull())
 row.addCell(new TableDataCell(pEmployeeName[i].toString()))
 .addCell(new TableDataCell("new employee"));
 else
 row.addCell(new TableDataCell(pEmployeeName[i].toString()))
 .addCell(new TableDataCell(pEmployeeNumber[i].toString()));
 tab.addRow(row);
 }
 hp.addItem(tab);
 } // generateReport

} // class TXNEmployeeReport
7-16 Oracle Application Server 4.0 Developer’s Guide: JServlet Applications

Index

Symbols
_client.jar, 5-2, 5-5

A
Add Application dialog, 2-4
Add Cartridge dialog, 2-5
administration, 2-6
advantages of using JServlets, 1-1
API, JServlet, 2-7
application

adding, 2-3
applications, 1-2

creating, 2-1
invoking cartridges, 3-10
transaction service, 6-6

B
binding sessions, 4-7

C
C++ CORBA applications, invoking, 5-6
cartridge servers, 1-2
cartridges, 1-2

adding, 2-4
chaining, servlet, 1-5
character sets, 7-9
classes

loading, 4-25
from directory different from physical

path, 4-25

from directory not directly under physical
path, 4-27

from directory under physical path, 4-26
name spaces, 4-23
native libraries, 4-27

CLASSPATH, 2-2, 4-23, 4-24
invoking ECO/Java objects, 5-1
invoking EJBs, 5-4
sessions, 4-2

client information, 3-2
closing streams, 3-9
CompoundItem class, 3-8
concurrency, 4-18

JWeb cartridge, 4-21
configurable sessions, 4-9
configuration options, 3-12
configuring

cartridges, 3-12
connectRM() method, 6-6
control flow, 1-4
cookies, 3-2, 4-2, 4-12

D
database

transaction service, 6-5
database access, 6-1, 7-1

transaction service with JDBC, 6-6
database errors, 7-9
databases, 6-1

accessing, 6-5
character sets, 6-2
connecting, 7-7
connections, 6-2
Index-1

freeing sessions, 7-10
handling errors, 7-9
JDBC, 6-1
JDBC example, 6-3

debugging, 1-3
definitions, 1-2
destroy() method, 1-4, 3-11
destroying instances, 3-11
development

strategy, 1-3
tools required, 1-3

development environment, 2-2
dialog boxes

Add Application, 2-4
Add Cartridge, 2-5

distributed sessions, 4-6
doGet() method, 1-3
doPost() method, 1-3
dumping garbage, 7-10
dynamic content, 1-5

E
ECO/Java objects

invoking from JServlet cartridge, 5-1
ecoapi.jar, 5-2
EJB

invoking from JServlet cartridge, 5-4
ejbapi.jar, 5-4
enableTransaction() method, 4-13
Enterprise Java Beans

see EJB
entry point method, 1-3
environment

development, 5-2, 5-4
runtime, 5-2, 5-5

environment variables, 2-2
sessions, 4-2

Environment Variables form
values, 3-12

examples
binding session events, 4-7
CompanyBanner class, 3-9
CompoundItem, 3-9
database, 6-3

form data, retrieving, 3-4
forms, HTML, 3-4
generating HTML

simple, 3-8
headers, generating, 3-5
HelloServlet, 2-2
HttpServletRequest object, 3-3
ICX, 4-11
initial parameters, accessing, 3-2
invoking ECO/Java objects, 5-3
invoking Enterprise Java Beans, 5-5
JDBC, 6-3
oracle.html package, 3-8
PL/SQL, sending a request, 4-15, 4-16
response object, writing to, 3-6
runtime interpreter options, 3-13
server environment, accessing, 3-2
ServletConfig, 3-2
sessions, 4-3
spawning sub-threads, 4-21
System stream, closing, 3-10
transaction service with JDBC, 6-6
tutorial, 2-1, 2-2
URLs, retrieving parameters from, 3-11

F
failure recovery, 4-7
fault tolerance, 4-7
form data, 3-3

G
generating, 3-6
GET method, 3-2, 3-3
getInitParameter() method, 3-1
getParameter() method, 3-2
getSession() method, 4-6
glossary, 1-2

H
headers

generating, 3-5
retrieving, 3-2
Index-2

HTML, 3-6
HTML generation

oracle.html package, 3-8
HtmlStream, 3-5

writing to, 3-7
HTTP request

see request
HTTP response

see response
HttpServletRequest object, 3-2
HttpServletResponse stream, 3-5
HttpSessionBindingListener interface, 4-7

I
ICX, 4-9

cookies, 4-12
example

not using SSL, 4-15
using SSL, 4-16

exceptions and errors, 4-14
request methods, 4-11
response methods, 4-12
SSL, 4-13
transactions, 4-13

ICXInitFailedException, 4-14
IncompatibleWithProtocolException, 4-14
init() method, 1-3, 3-1
initArgs, 3-2
initial parameters, setting, 3-2
initializing, 3-1
initTS() method, 6-5
instances, 1-2

destroying, 3-11
Inter-Cartridge Exchange Service

see ICX
interpreter, Java, 3-12
introduction, 1-1
invoke() method, 4-24
invoking, 3-10

C++ CORBA applications, 5-6
invoking cartridges, 3-10
invoking ECO/Java objects, 5-1

CLASSPATH, 5-1
example, 5-3

invoking EJBs, 5-4
CLASSPATH, 5-4

invoking JServlets, 1-1

J
Java applications

path variables, 6-3
using transaction service, 6-5

Java Environment, 3-2
Java Environment form, 3-12, 3-13
Java interpreter, 3-12
Java Reflection APIs, 4-24
Java Server Pages, 1-5
Java Servlet API Specification, 1-1
Java transaction Service (JTS), 6-5
JAVA_HOME, 2-2
javac compiler, 2-2
java.io.Serializable interface, 4-7
JDBC

example, 6-3
using drivers, 6-1

JDeveloper, 1-3
JDK, 1-5
JDSK, 1-5
JServlet runner, 1-2
JSP, 1-5
JTS, 6-5
JWeb cartridge

session, migration, 4-9
threading, migration, 4-21

L
LD_LIBRARY_PATH, 2-2
lifecycle of a JServlet request, 1-4
local sessions, 4-6

M
methods

connectRM(), 6-6
destroy(), 1-4, 3-11
doGet(), 1-3
doPost(), 1-3
Index-3

enableTransaction(), 4-13
entry point, 1-3
getParameter(), 3-2
getSession(), 4-6
init(), 1-3, 3-1
initTS(), 6-5
invoke(), 4-24
JServlet API, 2-7
setContents(), 4-13
setContentType(), 3-5
setHeaders(), 4-13
setWalletInfo(), 4-13
valueBound(), 4-7
valueUnbound(), 4-7

migrating
sessions, JWeb cartridge, 4-9
threading, JWeb cartridge, 4-21

multibyte character sets, 6-2
multi-threading, 4-18

N
name spaces, 4-23
name-value pairs, 3-2
name-value pairs, defining, 3-2
native libraries

adding classes, 4-27

O
OCI drivers, 6-2
Oracle Call Interface

see OCI
oracle.html package, 3-6

extending, 3-8
page generation, 3-8
using, 3-7

oracle.OAS.servlet.HttpSession package, 4-2
oracle.oas.session.Session

not found, 4-2
oracle.owas.wrb package, 4-21
output streams, 3-5
overview, 1-1

pl2java, 7-2

P
packages

JServlet API, 2-7
oracle.html, 3-6, 3-7, 3-8
oracle.html package, 3-8
oracle.OAS.Services.ICX, 4-9
oracle.OAS.servlet.HttpSession, 4-2
oracle.owas.wrb, 4-21
using custom

see classes, loading
PL/SQL

data type mapping for pl2java, 7-4
PL/SQL cartridge, 4-15, 4-16
PL/SQL data type mapping, 7-4
PL/SQL procedure mapping, 7-2
PL/SQL procedures, 7-1

invoking stored procedures, 6-1
PL/SQL stored procedures, 7-8
pl2java, 6-1

overview, 7-2
PL/SQL data type mapping, 7-4
requirements, 7-2
running, 7-3

pl2java utility, 7-1
POST method, 3-2, 3-3

R
reflection, 4-24
registration files, 2-7
reloading, 2-5
request

parameters, 3-2
requests, 3-2

lifecycle, 1-4
response, 3-4

headers, generating, 3-5
information, extending packages, 3-8
stream, 3-5
writing to, 3-6

runner, 1-2
runtime interpreter, 3-12
Index-4

S
Secure Sockets Layer

see SSL
security

sessions, 4-6
servlet chaining, 1-5
ServletConfig object, 3-1
sessions, 4-1

binding, 4-7
CLASSPATH, 4-2
configurable, 4-9
example, 4-3
models, 4-6
programmable, 4-2
security, 4-6

setContents() method, 4-13
setContentType() method, 3-5
setHeaders() method, 4-13
setWalletInfo() method, 4-13
SingleThreadModel interface, 4-19, 6-2
SQL statements

invoking, 6-1
SSL, 4-13
static objects, 4-19
strategy for development, 1-3
streams

closing, 3-9
streams, output, 3-5
System class, closing streams, 3-9
System.out stream, 3-5

T
terminology, 1-2
thread safety, 4-19
threads

JWeb cartridge, 4-21
scenario, 4-20
spawning example, 4-21
spawning sub-threads, 4-21
static objects, 4-19

THREADS_FLAG, 2-2
tools required for development, 1-3
transaction service, 6-5

for a JServlet application, 6-5
with JDBC, 6-6

tutorial, 2-1
application, adding, 2-3
cartridge, adding, 2-4
invoking, 2-6
reloading, 2-5

U
URLs

invoking cartridges, 3-10

V
valueBound() method, 4-7
valueUnbound() method, 4-7
versions of Java supported, 1-5
Virtual Path field, 2-5

W
Wallet Resource Locator

see WRL
WRB

ICX, 4-9
WRBRunnable class, 4-21
WRL, 4-14
Index-5

Index-6

	1 Introduction
	JServlet Terminology
	Developing Servlets for the JServlet Cartridge
	Control Flow
	Versions of Java Supported

	2 Tutorial
	1. Creating the Java Class Files
	2. Creating a JServlet Application and Cartridge
	3. Reloading Oracle Application Server
	4. Invoking the JServlet Cartridge
	For More Information...

	3 Developing JServlets
	Initializing Servlets
	Accessing HTTP Request Information
	Generating HTTP Response Information
	Invoking JServlet Cartridges
	Destroying JServlet Instances
	Runtime Interpreter Options

	4 Advanced JServlet Programming
	Using Sessions
	Inter-Cartridge Exchange (ICX) Service
	Servlet Concurrency
	Spawning Sub-Threads
	Name Spaces of Java Classes

	5 Invoking Components
	Invoking ECO/Java Objects
	Invoking Enterprise Java Beans
	Invoking C++ CORBA Applications

	6 Database Access
	Using JDBC Drivers
	JDBC Example
	Using the Transaction Service

	7 pl2java
	Overview of pl2java
	Requirements
	Running pl2java
	PL/SQL Data Type Mapping in Java
	Connecting to the Database
	Invoking PL/SQL Stored Procedures
	Handling Database Errors
	Setting the Character Set Value
	Freeing Database Sessions
	Using the Transaction Service with pl2java

	Index

